1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
|
#include "nn.h"
static void fill_random_weights(double *weights, double *bias, size_t rows, size_t cols);
static double get_avg_loss(
double labels[], double outs[], size_t shape[2],
double (*loss)(double *, double *, size_t));
double square_loss(double labels[], double net_outs[], size_t shape);
double square_dloss_out(double labels, double net_out);
double leaky_relu(double x);
double dleaky_relu(double x);
double relu(double x);
double drelu(double x);
double sigmoid(double x);
double dsigmoid(double x);
double softplus(double x);
double dsoftplus(double x);
struct Cost NN_SQUARE = {
.func = square_loss,
.dfunc_out = square_dloss_out
};
struct Activation NN_SOFTPLUS = {
.func = softplus,
.dfunc = dsoftplus,
};
struct Activation NN_LEAKY_RELU = {
.func = leaky_relu,
.dfunc = dleaky_relu
};
struct Activation NN_RELU = {
.func = relu,
.dfunc = drelu
};
struct Activation NN_SIGMOID = {
.func = sigmoid,
.dfunc = dsigmoid
};
void nn_network_train(
Layer network[], size_t network_size,
double *input, size_t input_shape[2],
double *labels, size_t labels_shape[2],
struct Cost cost, size_t epochs, double alpha)
{
assert(input_shape[0] == labels_shape[0] && "label samples don't correspond with input samples\n");
double **outs = calloc(network_size, sizeof(double *));
double **zouts = calloc(network_size, sizeof(double *));
double **weights = calloc(network_size, sizeof(double *));
double **biases = calloc(network_size, sizeof(double *));
if (!outs || !zouts || !weights || !biases) goto nn_network_train_error;
size_t samples = input_shape[0];
for (size_t l = 0; l < network_size; l++) {
outs[l] = calloc(samples * network[l].neurons, sizeof(double));
zouts[l] = calloc(samples * network[l].neurons, sizeof(double));
weights[l] = calloc(network[l].input_nodes * network[l].neurons, sizeof(double));
biases[l] = calloc(network[l].neurons, sizeof(double));
}
for (size_t epoch = 0; epoch < epochs; epoch++) {
nn_forward(outs, zouts, input, input_shape, network, network_size);
nn_backward(
weights, biases,
zouts, outs,
input, input_shape,
labels, labels_shape,
network, network_size,
cost.dfunc_out, alpha);
double *net_out = outs[network_size - 1];
fprintf(stdout, "epoch: %zu \t loss: %6.2lf\n",
epoch, get_avg_loss(labels, net_out, labels_shape, cost.func));
}
for (size_t l = 0; l < network_size; l++) {
free(outs[l]);
free(zouts[l]);
free(weights[l]);
free(biases[l]);
}
free(zouts);
free(outs);
free(weights);
free(biases);
return;
nn_network_train_error:
perror("nn_network_train() Error");
exit(1);
}
void nn_backward(
double **weights, double **bias,
double **Zout, double **Outs,
double *Input, size_t input_shape[2],
double *Labels, size_t labels_shape[2],
Layer network[], size_t network_size,
double (dcost_out_func)(double, double),
double alpha)
{
size_t max_neurons = 0;
for (size_t l = 0; l < network_size; l++) {
max_neurons = (max_neurons > network[l].neurons) ? max_neurons : network[l].neurons;
}
double *dcost_outs = calloc(labels_shape[0] * labels_shape[1], sizeof(double));
double *delta = calloc(max_neurons, sizeof(double));
double *delta_next = calloc(max_neurons, sizeof(double));
if (!dcost_outs || !delta || !delta_next) goto nn_backward_error;
for (size_t i = 0; i < labels_shape[0]; i++) {
for (size_t j = 0; j < labels_shape[1]; j++) {
size_t index = i * labels_shape[1] + j;
dcost_outs[index] = dcost_out_func(Labels[index], Outs[network_size - 1][index]);
}
}
for (size_t sample = 0; sample < input_shape[0]; sample++) {
for (size_t l = network_size - 1; l >= 0 && l < network_size; l--) {
size_t weights_shape[2] = {network[l].input_nodes, network[l].neurons};
if (l == network_size - 1) {
double *zout = Zout[l] + sample * network[l].neurons;
double *out_prev = Outs[l - 1] + sample * network[l-1].neurons;
double *dcost_out = dcost_outs + sample * network[l].neurons;
nn_layer_out_delta(delta, dcost_out, zout, network[l].neurons, network[l].activation.dfunc);
nn_layer_backward(weights[l], bias[l], weights_shape, delta, out_prev, network[l], alpha);
} else if (l == 0) {
size_t weights_next_shape[2] = {network[l+1].input_nodes, network[l+1].neurons};
double *zout = Zout[l] + sample * network[l].neurons;
double *input = Input + sample * input_shape[1];
nn_layer_hidden_delta(delta, delta_next, zout, weights[l+1], weights_next_shape, network[l].activation.dfunc);
nn_layer_backward(weights[l], bias[l], weights_shape, delta, input, network[l], alpha);
} else {
size_t weights_next_shape[2] = {network[l+1].input_nodes, network[l+1].neurons};
double *zout = Zout[l] + sample * network[l].neurons;
double *out_prev = Outs[l - 1] + sample * network[l-1].neurons;
nn_layer_hidden_delta(delta, delta_next, zout, weights[l+1], weights_next_shape, network[l].activation.dfunc);
nn_layer_backward(weights[l], bias[l], weights_shape, delta, out_prev, network[l], alpha);
}
memmove(delta_next, delta, weights_shape[1] * sizeof(double));
}
for (size_t l = 0; l < network_size; l++) {
size_t weights_shape[2] = {network[l].input_nodes, network[l].neurons};
memmove(network[l].weights, weights[l], weights_shape[0] * weights_shape[1] * sizeof(double));
memmove(network[l].bias, bias[l], weights_shape[1] * sizeof(double));
}
}
free(dcost_outs);
free(delta);
free(delta_next);
return;
nn_backward_error:
perror("nn_backward() Error");
exit(1);
}
void nn_layer_backward(
double *weights, double *bias, size_t weigths_shape[2],
double *delta, double *out_prev,
Layer layer, double alpha)
{
for (size_t i = 0; i < weigths_shape[0]; i++) {
for (size_t j = 0; j < weigths_shape[1]; j++) {
size_t index = weigths_shape[1] * i + j;
double dcost_w = delta[j] * out_prev[i];
weights[index] = layer.weights[index] - alpha * dcost_w;
}
}
for (size_t j = 0; j < weigths_shape[1]; j++)
bias[j] = layer.bias[j] - alpha * delta[j];
}
void nn_layer_hidden_delta(
double *delta, double *delta_next, double *zout,
double *weights_next, size_t weights_shape[2],
double (*activation_derivative)(double))
{
for (size_t j = 0; j < weights_shape[0]; j++) {
double sum = 0;
for (size_t k = 0; k < weights_shape[1]; k++) {
size_t index = j * weights_shape[1] + k;
sum += delta_next[k] * weights_next[index];
}
delta[j] = sum * activation_derivative(zout[j]);
}
}
void nn_layer_out_delta(
double *delta, double *error, double *zout,
size_t cols,
double (*activation_derivative)(double))
{
for (size_t i = 0; i < cols; i++) {
delta[i] = error[i] * activation_derivative(zout[i]);
}
}
void nn_forward(
double **out, double **zout,
double *X, size_t X_shape[2],
Layer network[], size_t network_size)
{
size_t in_shape[2] = {X_shape[0], X_shape[1]};
size_t out_shape[2];
out_shape[0] = X_shape[0];
double *input = X;
for (size_t l = 0; l < network_size; l++) {
out_shape[1] = network[l].neurons;
nn_layer_forward(network[l], zout[l], out_shape, input, in_shape);
nn_layer_map_activation(network[l].activation.func, out[l], out_shape, zout[l], out_shape);
in_shape[1] = out_shape[1];
input = out[l];
}
}
void nn_layer_map_activation(
double (*activation)(double),
double *aout, size_t aout_shape[2],
double *zout, size_t zout_shape[2])
{
if (zout_shape[0] != aout_shape[0] || zout_shape[1] != aout_shape[1]) {
fprintf(stderr,
"nn_layer_map_activation() Error: zout must have (%zu x %zu) dimensions not (%zu x %zu)\n",
aout_shape[0], aout_shape[1], zout_shape[0], zout_shape[1]);
exit(1);
}
for (size_t i = 0; i < aout_shape[0]; i++) {
for (size_t j = 0; j < aout_shape[1]; j ++) {
size_t index = aout_shape[1] * i + j;
aout[index] = activation(zout[index]);
}
}
}
void nn_layer_forward(Layer layer, double *zout, size_t zout_shape[2], double *input, size_t input_shape[2])
{
if (zout_shape[0] != input_shape[0] || zout_shape[1] != layer.neurons) {
fprintf(stderr,
"nn_layer_forward() Error: zout must have (%zu x %zu) dimensions not (%zu x %zu)\n",
input_shape[0], layer.neurons, zout_shape[0], zout_shape[1]);
exit(1);
}
for (size_t i = 0; i < input_shape[0]; i++) {
for (size_t j = 0; j < layer.neurons; j++) {
size_t index = layer.neurons * i + j;
zout[index] = layer.bias[j];
}
}
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
input_shape[0], layer.neurons, layer.input_nodes, // m, n, k
1.0, input, input_shape[1], //alpha X
layer.weights, layer.neurons, // W
1.0, zout, layer.neurons); // beta B
}
void nn_network_init_weights(Layer layers[], size_t nmemb, size_t n_inputs)
{
int i;
size_t prev_size = n_inputs;
for (i = 0; i < nmemb; i++) {
layers[i].weights = calloc(prev_size * layers[i].neurons, sizeof(double));
layers[i].bias = calloc(layers[i].neurons, sizeof(double));
if (layers[i].weights == NULL || layers[i].bias == NULL) {
goto nn_layers_calloc_weights_error;
}
fill_random_weights(layers[i].weights, layers[i].bias, prev_size, layers[i].neurons);
layers[i].input_nodes = prev_size;
prev_size = layers[i].neurons;
}
return;
nn_layers_calloc_weights_error:
perror("nn_layers_calloc_weights() Error");
exit(1);
}
void nn_network_free_weights(Layer layers[], size_t nmemb)
{
for (int i = 0; i < nmemb; i++) {
free(layers[i].weights);
free(layers[i].bias);
}
}
void fill_random_weights(double *weights, double *bias, size_t rows, size_t cols)
{
FILE *fp = fopen("/dev/random", "rb");
if (fp == NULL) goto nn_fill_random_weights_error;
size_t weights_size = rows * cols;
int64_t *random_weights = calloc(weights_size, sizeof(int64_t));
int64_t *random_bias = calloc(cols, sizeof(int64_t));
fread(random_weights, sizeof(int64_t), weights_size, fp);
fread(random_bias, sizeof(int64_t), cols, fp);
if (!random_weights || !random_bias) goto nn_fill_random_weights_error;
for (size_t i = 0; i < weights_size; i++) {
weights[i] = (double)random_weights[i] / (double)INT64_MAX * 2;
}
for (size_t i = 0; i < cols; i++) {
bias[i] = (double)random_bias[i] / (double)INT64_MAX * 2;
}
free(random_weights);
free(random_bias);
fclose(fp);
return;
nn_fill_random_weights_error:
perror("nn_fill_random_weights Error()");
exit(1);
}
double sigmoid(double x)
{
return 1 / (1 + exp(-x));
}
double dsigmoid(double x)
{
return sigmoid(x) * (1 - sigmoid(x));
}
double relu(double x)
{
return (x > 0) ? x : 0;
}
double drelu(double x)
{
return (x > 0) ? 1 : 0;
}
double leaky_relu(double x)
{
return (x > 0) ? x : 0.01 * x;
}
double dleaky_relu(double x)
{
return (x > 0) ? 1 : 0.01;
}
double softplus(double x)
{
return log1p(exp(x));
}
double dsoftplus(double x)
{
return sigmoid(x);
}
double square_loss(double labels[], double net_out[], size_t shape)
{
double sum = 0;
for (size_t i = 0; i < shape; i++) {
sum += pow(labels[i] - net_out[i], 2);
}
return 0.5 * sum;
}
double square_dloss_out(double label, double net_out)
{
return net_out - label;
}
double get_avg_loss(
double labels[], double outs[], size_t shape[2],
double (*loss)(double *, double *, size_t shape))
{
double sum = 0;
for (size_t i = 0; i < shape[0]; i += shape[1]) {
sum += loss(labels + i, outs + i, shape[1]);
}
return sum / shape[0];
}
|