aboutsummaryrefslogtreecommitdiff
path: root/src/nn.c
diff options
context:
space:
mode:
authorjvech <jmvalenciae@unal.edu.co>2023-08-08 08:55:34 -0500
committerjvech <jmvalenciae@unal.edu.co>2023-08-08 08:55:34 -0500
commitfff35116eed83c9368e8bd07d02c9e95c447e018 (patch)
tree1394111719a7482348b6c871cdac5d856685df01 /src/nn.c
parentaeb27a882087ee447a155bd589bd3712050a16f5 (diff)
add: activation and cost functions added
Training function were fixed and new activation and cost function were implemented
Diffstat (limited to 'src/nn.c')
-rw-r--r--src/nn.c134
1 files changed, 97 insertions, 37 deletions
diff --git a/src/nn.c b/src/nn.c
index 1d08c6b..0bcc28b 100644
--- a/src/nn.c
+++ b/src/nn.c
@@ -1,13 +1,37 @@
#include "nn.h"
static void fill_random_weights(double *weights, double *bias, size_t rows, size_t cols);
-static double get_avg_loss(double labels[], double outs[], size_t shape[2], double (*loss)(double, double));
+static double get_avg_loss(
+ double labels[], double outs[], size_t shape[2],
+ double (*loss)(double *, double *, size_t));
+double square_loss(double labels[], double net_outs[], size_t shape);
+double square_dloss_out(double labels, double net_out);
+
+double leaky_relu(double x);
+double dleaky_relu(double x);
double relu(double x);
double drelu(double x);
double sigmoid(double x);
double dsigmoid(double x);
+double softplus(double x);
+double dsoftplus(double x);
+
+struct Cost NN_SQUARE = {
+ .func = square_loss,
+ .dfunc_out = square_dloss_out
+};
+
+struct Activation NN_SOFTPLUS = {
+ .func = softplus,
+ .dfunc = dsoftplus,
+};
+
+struct Activation NN_LEAKY_RELU = {
+ .func = leaky_relu,
+ .dfunc = dleaky_relu
+};
struct Activation NN_RELU = {
.func = relu,
@@ -45,7 +69,7 @@ void nn_network_train(
biases[l] = calloc(network[l].neurons, sizeof(double));
}
- for (size_t epoch = 0; epoch < epochs; epochs++) {
+ for (size_t epoch = 0; epoch < epochs; epoch++) {
nn_forward(outs, zouts, input, input_shape, network, network_size);
nn_backward(
weights, biases,
@@ -55,7 +79,7 @@ void nn_network_train(
network, network_size,
cost.dfunc_out, alpha);
double *net_out = outs[network_size - 1];
- fprintf(stderr, "epoch: %zu \tavg loss: %6.2lf\n",
+ fprintf(stdout, "epoch: %zu \t loss: %6.2lf\n",
epoch, get_avg_loss(labels, net_out, labels_shape, cost.func));
}
@@ -71,6 +95,7 @@ void nn_network_train(
free(weights);
free(biases);
+ return;
nn_network_train_error:
perror("nn_network_train() Error");
exit(1);
@@ -89,54 +114,55 @@ void nn_backward(
for (size_t l = 0; l < network_size; l++) {
max_neurons = (max_neurons > network[l].neurons) ? max_neurons : network[l].neurons;
}
- double *dcost_out = calloc(labels_shape[0] * labels_shape[1], sizeof(double));
+ double *dcost_outs = calloc(labels_shape[0] * labels_shape[1], sizeof(double));
double *delta = calloc(max_neurons, sizeof(double));
double *delta_next = calloc(max_neurons, sizeof(double));
- if (!dcost_out || !delta || !delta_next) goto nn_backward_error;
+ if (!dcost_outs || !delta || !delta_next) goto nn_backward_error;
for (size_t i = 0; i < labels_shape[0]; i++) {
- for (size_t j = 0; j < labels_shape[0]; j++) {
+ for (size_t j = 0; j < labels_shape[1]; j++) {
size_t index = i * labels_shape[1] + j;
- dcost_out[index] = dcost_out_func(Labels[index], Outs[network_size - 1][index]);
+ dcost_outs[index] = dcost_out_func(Labels[index], Outs[network_size - 1][index]);
}
}
for (size_t sample = 0; sample < input_shape[0]; sample++) {
- for (size_t l = network_size - 1; l >= 0; l--) {
- size_t weigths_shape[2] = {network[l].input_nodes, network[l].neurons};
+ for (size_t l = network_size - 1; l >= 0 && l < network_size; l--) {
+ size_t weights_shape[2] = {network[l].input_nodes, network[l].neurons};
if (l == network_size - 1) {
double *zout = Zout[l] + sample * network[l].neurons;
double *out_prev = Outs[l - 1] + sample * network[l-1].neurons;
+ double *dcost_out = dcost_outs + sample * network[l].neurons;
nn_layer_out_delta(delta, dcost_out, zout, network[l].neurons, network[l].activation.dfunc);
- nn_layer_backward(weights[l], bias[l], weigths_shape, delta, out_prev, network[l], alpha);
+ nn_layer_backward(weights[l], bias[l], weights_shape, delta, out_prev, network[l], alpha);
} else if (l == 0) {
- size_t weigths_next_shape[2] = {network[l+1].input_nodes, network[l+1].neurons};
+ size_t weights_next_shape[2] = {network[l+1].input_nodes, network[l+1].neurons};
double *zout = Zout[l] + sample * network[l].neurons;
double *input = Input + sample * input_shape[1];
- nn_layer_hidden_delta(delta, delta_next, zout, weights[l+1], weigths_next_shape, network[l].activation.dfunc);
- nn_layer_backward(weights[l], bias[l], weigths_shape, delta, input, network[l], alpha);
- break;
+ nn_layer_hidden_delta(delta, delta_next, zout, weights[l+1], weights_next_shape, network[l].activation.dfunc);
+ nn_layer_backward(weights[l], bias[l], weights_shape, delta, input, network[l], alpha);
} else {
- size_t weigths_next_shape[2] = {network[l+1].input_nodes, network[l+1].neurons};
+ size_t weights_next_shape[2] = {network[l+1].input_nodes, network[l+1].neurons};
double *zout = Zout[l] + sample * network[l].neurons;
double *out_prev = Outs[l - 1] + sample * network[l-1].neurons;
- nn_layer_hidden_delta(delta, delta_next, zout, weights[l+1], weigths_next_shape, network[l].activation.dfunc);
- nn_layer_backward(weights[l], bias[l], weigths_shape, delta, out_prev, network[l], alpha);
+ nn_layer_hidden_delta(delta, delta_next, zout, weights[l+1], weights_next_shape, network[l].activation.dfunc);
+ nn_layer_backward(weights[l], bias[l], weights_shape, delta, out_prev, network[l], alpha);
}
- memmove(delta_next, delta, weigths_shape[1] * sizeof(double));
+ memmove(delta_next, delta, weights_shape[1] * sizeof(double));
}
- for (size_t l = network_size - 1; l >= 0; l--) {
- size_t weigths_shape[2] = {network[l].input_nodes, network[l].neurons};
- memmove(network[l].weights, weights[l], weigths_shape[0] * weigths_shape[1] * sizeof(double));
- memmove(network[l].bias, bias[l], weigths_shape[1] * sizeof(double));
+
+ for (size_t l = 0; l < network_size; l++) {
+ size_t weights_shape[2] = {network[l].input_nodes, network[l].neurons};
+ memmove(network[l].weights, weights[l], weights_shape[0] * weights_shape[1] * sizeof(double));
+ memmove(network[l].bias, bias[l], weights_shape[1] * sizeof(double));
}
}
- free(dcost_out);
+ free(dcost_outs);
free(delta);
free(delta_next);
-
+ return;
nn_backward_error:
perror("nn_backward() Error");
exit(1);
@@ -161,14 +187,14 @@ void nn_layer_backward(
void nn_layer_hidden_delta(
double *delta, double *delta_next, double *zout,
- double *weigths_next, size_t weigths_shape[2],
+ double *weights_next, size_t weights_shape[2],
double (*activation_derivative)(double))
{
- for (size_t j = 0; j < weigths_shape[0]; j++) {
+ for (size_t j = 0; j < weights_shape[0]; j++) {
double sum = 0;
- for (size_t k = 0; k < weigths_shape[1]; k++) {
- size_t index = j * weigths_shape[1] + k;
- sum += delta_next[k] * weigths_next[index];
+ for (size_t k = 0; k < weights_shape[1]; k++) {
+ size_t index = j * weights_shape[1] + k;
+ sum += delta_next[k] * weights_next[index];
}
delta[j] = sum * activation_derivative(zout[j]);
}
@@ -327,18 +353,52 @@ double relu(double x)
return (x > 0) ? x : 0;
}
-double drelu(double x) {
+double drelu(double x)
+{
return (x > 0) ? 1 : 0;
}
-double get_avg_loss(double labels[], double outs[], size_t shape[2], double (*loss)(double, double))
+double leaky_relu(double x)
+{
+ return (x > 0) ? x : 0.01 * x;
+}
+
+double dleaky_relu(double x)
+{
+ return (x > 0) ? 1 : 0.01;
+}
+
+double softplus(double x)
+{
+ return log1p(exp(x));
+}
+
+double dsoftplus(double x)
+{
+ return sigmoid(x);
+}
+
+double square_loss(double labels[], double net_out[], size_t shape)
{
double sum = 0;
- for (size_t i = 0; i < shape[0]; i++) {
- for (size_t j = 0; j < shape[1]; j++) {
- size_t index = i * shape[1] + j;
- sum += loss(labels[index], outs[index]);
- }
+ for (size_t i = 0; i < shape; i++) {
+ sum += pow(labels[i] - net_out[i], 2);
+ }
+ return 0.5 * sum;
+}
+
+double square_dloss_out(double label, double net_out)
+{
+ return net_out - label;
+}
+
+double get_avg_loss(
+ double labels[], double outs[], size_t shape[2],
+ double (*loss)(double *, double *, size_t shape))
+{
+ double sum = 0;
+ for (size_t i = 0; i < shape[0]; i += shape[1]) {
+ sum += loss(labels + i, outs + i, shape[1]);
}
- return sum / shape[1];
+ return sum / shape[0];
}
Feel free to download, copy and edit any repo