aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorjvech <jmvalenciae@unal.edu.co>2023-08-08 17:04:04 -0500
committerjvech <jmvalenciae@unal.edu.co>2023-08-08 17:04:04 -0500
commit4b2fec340e01d09902ca790621b476a05f4b8c2a (patch)
tree542e59795357b9a94c873f6cd44371e3bd48ea38 /src
parentfff35116eed83c9368e8bd07d02c9e95c447e018 (diff)
add: pass activations to a separate file
The point is have this file for new activation function without bloating nn.c file
Diffstat (limited to 'src')
-rw-r--r--src/activations.c37
-rw-r--r--src/nn.c70
2 files changed, 37 insertions, 70 deletions
diff --git a/src/activations.c b/src/activations.c
new file mode 100644
index 0000000..011734d
--- /dev/null
+++ b/src/activations.c
@@ -0,0 +1,37 @@
+#include "nn.h"
+
+double leaky_relu(double x);
+double dleaky_relu(double x);
+double relu(double x);
+double drelu(double x);
+double sigmoid(double x);
+double dsigmoid(double x);
+double softplus(double x);
+double dsoftplus(double x);
+
+struct Activation NN_LEAKY_RELU = {
+ .func = leaky_relu,
+ .dfunc = dleaky_relu
+};
+
+struct Activation NN_RELU = {
+ .func = relu,
+ .dfunc = drelu
+};
+
+struct Activation NN_SIGMOID = {
+ .func = sigmoid,
+ .dfunc = dsigmoid
+};
+
+double sigmoid(double x) { return 1 / (1 + exp(-x)); }
+double dsigmoid(double x) { return sigmoid(x) * (1 - sigmoid(x)); }
+
+double relu(double x) { return (x > 0) ? x : 0; }
+double drelu(double x) { return (x > 0) ? 1 : 0; }
+
+double leaky_relu(double x) { return (x > 0) ? x : 0.01 * x; }
+double dleaky_relu(double x) { return (x > 0) ? 1 : 0.01; }
+
+double softplus(double x) { return log1p(exp(x)); }
+double dsoftplus(double x) { return sigmoid(x); }
diff --git a/src/nn.c b/src/nn.c
index 0bcc28b..63dd643 100644
--- a/src/nn.c
+++ b/src/nn.c
@@ -9,41 +9,11 @@ static double get_avg_loss(
double square_loss(double labels[], double net_outs[], size_t shape);
double square_dloss_out(double labels, double net_out);
-double leaky_relu(double x);
-double dleaky_relu(double x);
-double relu(double x);
-double drelu(double x);
-double sigmoid(double x);
-double dsigmoid(double x);
-double softplus(double x);
-double dsoftplus(double x);
-
struct Cost NN_SQUARE = {
.func = square_loss,
.dfunc_out = square_dloss_out
};
-struct Activation NN_SOFTPLUS = {
- .func = softplus,
- .dfunc = dsoftplus,
-};
-
-struct Activation NN_LEAKY_RELU = {
- .func = leaky_relu,
- .dfunc = dleaky_relu
-};
-
-struct Activation NN_RELU = {
- .func = relu,
- .dfunc = drelu
-};
-
-struct Activation NN_SIGMOID = {
- .func = sigmoid,
- .dfunc = dsigmoid
-};
-
-
void nn_network_train(
Layer network[], size_t network_size,
double *input, size_t input_shape[2],
@@ -338,46 +308,6 @@ nn_fill_random_weights_error:
exit(1);
}
-double sigmoid(double x)
-{
- return 1 / (1 + exp(-x));
-}
-
-double dsigmoid(double x)
-{
- return sigmoid(x) * (1 - sigmoid(x));
-}
-
-double relu(double x)
-{
- return (x > 0) ? x : 0;
-}
-
-double drelu(double x)
-{
- return (x > 0) ? 1 : 0;
-}
-
-double leaky_relu(double x)
-{
- return (x > 0) ? x : 0.01 * x;
-}
-
-double dleaky_relu(double x)
-{
- return (x > 0) ? 1 : 0.01;
-}
-
-double softplus(double x)
-{
- return log1p(exp(x));
-}
-
-double dsoftplus(double x)
-{
- return sigmoid(x);
-}
-
double square_loss(double labels[], double net_out[], size_t shape)
{
double sum = 0;
Feel free to download, copy and edit any repo