aboutsummaryrefslogtreecommitdiff
path: root/src/linear.c
blob: 0ceef155a30c6bd971c640571121cc07ca935052 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
/*
 * This file is part of mverse
 * Copyright (C) 2022  juanvalencia.xyz

 * mverse is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.

 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.

 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

#include "linear.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <math.h>

Mat4
linearLookAt(Vec3 position, Vec3 target, Vec3 world_up)
{
    Mat4 out = linearMat4Identity(1.0);
    Mat4 translate;
    Vec3 cam_dir, cam_right, cam_up;
    /* position - target */
    cam_dir = linearVec3Add(position, linearVec3ScalarMulp(target, -1.0));
    cam_dir = linearVec3Normalize(cam_dir);

    cam_right = linearVec3CrossProduct(world_up, cam_dir);
    cam_right = linearVec3Normalize(cam_right);

    cam_up = linearVec3CrossProduct(cam_dir, cam_right);

    int i;
    for (i = 0; i < 3; i++) {
        out.matrix[0][i] = cam_right.vector[i];
        out.matrix[1][i] = cam_up.vector[i];
        out.matrix[2][i] = cam_dir.vector[i];
    }
    translate = linearTranslate(-position.vector[0],
                                -position.vector[1],
                                -position.vector[2]);
    return linearMat4Mul(out, translate);
}

Mat4
linearPerspective(float FoV, float ratio, float near, float far)
{
    Mat4 out = linearMat4Fill(0.0);
    float FoV_radians = FoV * M_PI / 180 / 2;
    float width = 2 * near * tanf(FoV_radians) * ratio;
    float height = 2 * near * tanf(FoV_radians);

    out.matrix[0][0] = near / width;
    out.matrix[1][1] = near / height;
    out.matrix[2][2] = -(far + near) / (far - near);
    out.matrix[2][3] = -2 * far * near / (far - near);
    out.matrix[3][2] = -1;
    return out;
}

Mat4
linearOrtho(float left, float right, float bottom, float top, float near, float far)
{
    Mat4 out = linearMat4Identity(1.0);

    float width = right - left;
    float height = top - bottom;
    float depth = far - near;

    out.matrix[0][0] = 2 / (width);
    out.matrix[0][3] = - (right + left) / width;

    out.matrix[1][1] = 2 / (height);
    out.matrix[1][3] = - (top + bottom) / height;

    out.matrix[2][2] = -2 / (depth);
    out.matrix[2][2] = - (far + near) / depth;
    return out;
}

Mat4
linearTranslate(float T_x, float T_y, float T_z)
{
    Mat4 out = linearMat4Identity(1.0);
    out.matrix[0][3] = T_x;
    out.matrix[1][3] = T_y;
    out.matrix[2][3] = T_z;
    return out;
}

Mat4
linearTranslatev(Vec3 T)
{
    return linearTranslate(T.vector[0], T.vector[1], T.vector[2]);
}

Mat4
linearScale(float S_x, float S_y, float S_z)
{
    Mat4 out = linearMat4Identity(1.0);
    out.matrix[0][0] = S_x;
    out.matrix[1][1] = S_y;
    out.matrix[2][2] = S_z;
    return out;
}

Mat4
linearScalev(Vec3 S)
{
    return linearScale(S.vector[0], S.vector[1], S.vector[2]);
}

Mat4
linearRotatev(float degree, Vec3 R_xyz)
{
    Mat4 out = linearMat4Identity(1.0);
    Vec3 R_xyz_normalized = linearVec3Normalize(R_xyz);
    float radians = degree * M_PI/180.0;
    float Rx = R_xyz_normalized.vector[0];
    float Ry = R_xyz_normalized.vector[1]; 
    float Rz = R_xyz_normalized.vector[2];
    float rcos = cosf(radians);
    float rsin = sinf(radians);

    out.matrix[0][0] = rcos + pow(Rx, 2) * (1 - rcos);
    out.matrix[0][1] = Rx * Ry * (1 - rcos) - Rz * rsin;
    out.matrix[0][2] = Rx * Rz * (1 - rcos) + Ry * rsin;

    out.matrix[1][0] = Rx * Ry * (1 - rcos) + Rz * rsin;
    out.matrix[1][1] = rcos + pow(Ry, 2) * ( 1 - rcos);
    out.matrix[1][2] = Ry * Rz * (1 - rcos) - Rx * rsin;

    out.matrix[2][0] = Rz * Rx * (1 - rcos) - Ry * rsin;
    out.matrix[2][1] = Ry * Rz * (1 - rcos) + Rx * rsin;
    out.matrix[2][2] = rcos + pow(Rz, 2) * ( 1 - rcos);
    return out;
}

Mat4
linearRotate(float degree, float Rx, float Ry, float Rz)
{
    return linearRotatev(degree, linearVec3(Rx, Ry, Rz));
}

Mat4
linearMat4Fill(float value)
{
    int i, j;
    Mat4 out;
    for (i = 0; i < 4; i++) {
        for (j = 0; j < 4; j++) {
            out.matrix[i][j] = value;
        }
    }
    return out;
}

Mat4
linearMat4Identity(float value)
{
    int i, j;
    Mat4 out;
    for (i = 0; i < 4; i++) {
        for (j = 0; j < 4; j++) {
            if (i == j) out.matrix[i][j] = value;
            else out.matrix[i][j] = 0.0;
        }
    }
    return out;
}

Mat4
linearMat4Transpose(Mat4 x)
{
    Mat4 out;
    int i, j;
    for (i = 0; i < 4; i++) {
        for (j = 0; j < 4; j++) {
            out.matrix[i][j] = x.matrix[j][i];
        }
    }
    return out;
}

Mat4
linearMat4Mul(Mat4 x1, Mat4 x2)
{
    Mat4 out;
    int i, j, k;
    for (i = 0; i < 4; i++) {
        for (j = 0; j < 4; j++) {
            out.matrix[i][j] = 0.0;
            for (k = 0; k < 4; k++) 
                out.matrix[i][j] += x1.matrix[i][k] * x2.matrix[k][j];
        }
    }
    return out;
}

Mat4
linearMat4Muln(int n, ...)
{
    Mat4 out;

    if (n <= 0) {
        fprintf(stderr, "linearMat4Muln() Error: the specified number of args must be a positive integer greater than 0\n");
    }

    va_list(ap);
    va_start(ap, n);
    out = va_arg(ap, Mat4);

    int i;
    for (i = 1; i < n; i++) {
        out = linearMat4Mul(out, va_arg(ap, Mat4));
    }
    va_end(ap);
    return out;
}

Mat4
linearMat4Add(Mat4 x1, Mat4 x2)
{
    int i, j;
    Mat4 out;
    for (i = 0; i < 4; i++) {
        for (j = 0; j < 4; j++) {
            out.matrix[i][j] = x1.matrix[i][j] + x2.matrix[i][j];
        }
    }
    return out;
}

float
linearMat4Det(Mat4 x)
{
    return 0.0;
}

Vec3
linearVec3ScalarMulp(Vec3 x, float scalar)
{
    Vec3 out;
    int i;
    for (i = 0; i < 3; i++) {
        out.vector[i] = scalar * x.vector[i];
    }
    return out;
}

Vec3
linearVec3(float x, float y, float z)
{
    Vec3 out;
    out.vector[0] = x;
    out.vector[1] = y;
    out.vector[2] = z;
    return out;
}

Vec3
linearVec3Add(Vec3 x, Vec3 y) 
{
    Vec3 out;
    int i;
    for (i = 0; i < 3; i++) {
        out.vector[i] = x.vector[i] + y.vector[i];
    }
    return out;
}

Vec3
linearVec3Normalize(Vec3 x)
{
    Vec3 out;
    float norm = sqrtf(linearVec3DotProduct(x, x));
    int i;
    if (norm == 0) return x;
    for (i = 0; i < 3; i++) {
        out.vector[i] = x.vector[i] / norm;
    }
    return out;
}

Vec3
linearVec3CrossProduct(Vec3 x, Vec3 y)
{
    Vec3 out;
    out.vector[0] = x.vector[1] * y.vector[2] - x.vector[2] * y.vector[1];
    out.vector[1] = - x.vector[0] * y.vector[2] + x.vector[2] * y.vector[0];
    out.vector[2] = x.vector[0] * y.vector[1] - x.vector[1] * y.vector[0];
    return out;
}

float
linearVec3DotProduct(Vec3 x, Vec3 y)
{
    float out = 0;
    int i;
    for (i = 0; i < 3; i++) {
        out += x.vector[i] * y.vector[i];
    }
    return out;
}
Feel free to download, copy and edit any repo