1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
|
/**
* ml - a neural network processor written with C
* Copyright (C) 2023 jvech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <getopt.h>
#include "util.h"
#define BUFFER_SIZE 1024
static int cmpstringp(const void *, const void *);
static char ** config_read_values(size_t *n_out_keys, char *first_value, char **strtok_ptr);
static void load_net_cfgs(struct Configs *cfg, char *key, char *value, char *strtok_ptr, char *filepath);
static void load_lyr_cfgs(struct Configs *cfg, char *key, char *value, char *filepath);
static void load_categorical_cfgs(struct Configs *cfg, char *key, char *value, char *strtok_ptr);
static void load_preprocess_cfgs(struct Configs *cfg, char *key, char *value, char *strtok_ptr, char *filepath);
static void add_lyr(struct Configs *cfg);
void die(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
if (fmt[0] && fmt[strlen(fmt)-1] == ':') {
fputc(' ', stderr);
perror(NULL);
} else {
fputc('\n', stderr);
}
exit(1);
}
void * erealloc(void *ptr, size_t size)
{
void *p;
if (!(p = realloc(ptr, size)))
die("realloc:");
return p;
}
void * ecalloc(size_t nmemb, size_t size)
{
void *p;
if (!(p = calloc(nmemb, size)))
die("calloc:");
return p;
}
char *e_strdup(const char *s)
{
char *out = strdup(s);
if (out == NULL) die("strdup() Error:");
return out;
}
void version()
{
printf("ml 0.2.0\n");
printf( "Copyright (C) 2023 jvech\n\n"
"This program is free software: you can redistribute it and/or modify\n"
"it under the terms of the GNU General Public License as published by\n"
"the Free Software Foundation, either version 3 of the License, or\n"
"(at your option) any later version.\n\n"
);
printf("Written by jvech\n");
exit(0);
}
void usage(int exit_code)
{
FILE *fp = (!exit_code) ? stdout : stderr;
fprintf(fp,
"Usage: ml [re]train [Options] FILE\n"
" or: ml predict [-Ohv] [-f FORMAT] [-o FILE] [-p INT] FILE\n"
"\n"
"Options:\n"
" -h, --help Show this message\n"
" -f, --format=FORMAT Define input or output FILE format if needed\n"
" -O, --only-out Don't show input fields (only works with predict)\n"
" -a, --alpha=ALPHA Learning rate (only works with train)\n"
" -b, --batch=INT Select batch size [default: 32] (only works with train)\n"
" -c, --config=FILE Configuration filepath [default=~/.config/ml/ml.cfg]\n"
" -e, --epochs=EPOCHS Epochs to train the model (only works with train)\n"
" -o, --output=FILE Output file (only works with predict)\n"
" -p, --precision=INT Decimals output precision (only works with predict)\n"
" [default=auto]\n"
" -S, --no-shuffle Don't shuffle data each epoch (only works with train)\n"
"\n"
);
exit(exit_code);
}
void util_load_cli(struct Configs *ml, int argc, char *argv[])
{
if (argc <= 1) usage(1);
static struct option long_opts[] = {
{"help", no_argument, 0, 'h'},
{"version", no_argument, 0, 'v'},
{"format", required_argument, 0, 'f'},
{"epochs", required_argument, 0, 'e'},
{"batch", required_argument, 0, 'b'},
{"alpha", required_argument, 0, 'a'},
{"no-shuffle", no_argument, 0, 'S'},
{"output", required_argument, 0, 'o'},
{"config", required_argument, 0, 'c'},
{"only-out", no_argument, 0, 'O'},
{"precision", required_argument, 0, 'p'},
{0, 0, 0, 0 },
};
int c;
while (1) {
c = getopt_long(argc, argv, "hvOSc:e:a:o:i:f:p:b:", long_opts, NULL);
if (c == -1) {
break;
}
switch (c) {
case 'e':
ml->epochs = (size_t)atol(optarg);
break;
case 'a':
ml->alpha = (double)atof(optarg);
break;
case 'o':
ml->out_filepath = optarg;
break;
case 'c':
ml->config_filepath = optarg;
break;
case 'f':
ml->file_format = optarg;
break;
case 'O':
ml->only_out = true;
break;
case 'p':
ml->decimal_precision = (!strcmp("auto", optarg))? -1: (int)atoi(optarg);
break;
case 'b':
if (atoi(optarg) <= 0) die("util_load_cli() Error: batch size must be greater than 0");
ml->batch_size = (size_t)atol(optarg);
break;
case 'S':
ml->shuffle = false;
break;
case 'h':
usage(0);
break;
case 'v':
version();
break;
default:
usage(1);
break;
}
}
argv += optind;
argc -= optind;
if (argc != 2) usage(1);
ml->in_filepath = argv[1];
}
void util_free_config(struct Configs *ml)
{
if (ml->loss != NULL) free(ml->loss);
if (ml->neurons != NULL) free(ml->neurons);
if (ml->weights_filepath != NULL) free(ml->weights_filepath);
if (ml->input_keys != NULL) {
for (size_t i = 0; i < ml->n_input_keys; i++)
free(ml->input_keys[i]);
free(ml->input_keys);
}
if (ml->label_keys != NULL) {
for (size_t i = 0; i < ml->n_label_keys; i++)
free(ml->label_keys[i]);
free(ml->label_keys);
}
if (ml->activations != NULL) {
for (size_t i = 0; i < ml->network_size; i++)
free(ml->activations[i]);
free(ml->activations);
}
if (ml->onehot_keys != NULL) {
for (size_t i = 0; i < ml->n_onehot_keys; i++)
free(ml->onehot_keys[i]);
free(ml->onehot_keys);
}
if (ml->categorical_keys != NULL) {
for (size_t i = 0; i < ml->n_categorical_keys; i++)
free(ml->categorical_keys[i]);
free(ml->categorical_keys);
}
if (ml->categorical_values != NULL) {
for (size_t i = 0; i < ml->n_categorical_keys; i++) {
for (size_t j = 0; j < ml->n_categorical_values[i]; j++) {
free(ml->categorical_values[i][j]);
}
free(ml->categorical_values[i]);
}
free(ml->n_categorical_values);
free(ml->categorical_values);
}
}
void util_load_config(struct Configs *ml, char *filepath)
{
enum Section {NET, PREPROCESSING, CATEGORICAL, LAYER, OUT_LAYER};
enum Section section;
int line_number = 0;
char line_buffer[BUFFER_SIZE], line_buffer_original[BUFFER_SIZE];
char token_buffer[BUFFER_SIZE];
FILE *fp = fopen(filepath, "r");
if (fp == NULL) return;
while (fgets(line_buffer, BUFFER_SIZE, fp)) {
int ret = sscanf(line_buffer, "[%[-_a-zA-Z0-9]]", token_buffer);
line_number++;
if (ret >= 1){
if (!strcmp("net", token_buffer)) {
section = NET;
} else if (!strcmp("layer", token_buffer)) {
section = LAYER;
ml->network_size++;
add_lyr(ml);
} else if (!strcmp("outlayer", token_buffer)) {
section = OUT_LAYER;
ml->network_size++;
add_lyr(ml);
ml->neurons[ml->network_size-1] = ml->n_label_keys;
} else if (!strcmp("preprocessing", token_buffer)) {
section = PREPROCESSING;
} else if (!strcmp("categorical_fields", token_buffer)) {
section = CATEGORICAL;
} else {
die("util_load_config() Error: Unknown section '%s' on %s",
line_buffer, filepath);
}
continue;
}
sscanf(line_buffer, "%1023[^\n]", line_buffer_original);
char *line_ptr = line_buffer;
while (*line_ptr == ' ') line_ptr++; // delete whitespaces
/* if the line start with comments or is a blank line ignore it */
if (*line_ptr == ';'
|| *line_ptr == '#'
|| *line_ptr == '\n') continue;
/* Verify that each line starts with [a-zA-Z] */
if ((*line_ptr < 0x41 && *line_ptr > 0x5A)
|| (*line_ptr < 0x61 && *line_ptr > 0x7A))
goto util_load_config_error;
char *ptr_buffer;
strtok_r(line_buffer, ";#", &ptr_buffer); // omit comments
/* Check For invalid = characters*/
int eq_count;
for (eq_count = 0, line_ptr = line_buffer;
*line_ptr != '\0';
line_ptr++, eq_count += (*line_ptr == '='));
if (eq_count > 1) goto util_load_config_error;
/* Load Key Value */
char *key, *value;
key = strtok_r(line_buffer, " =", &ptr_buffer);
value = strtok_r(NULL, "= ,\n", &ptr_buffer);
if (value == NULL) goto util_load_config_error;
switch (section) {
case NET:
load_net_cfgs(ml, key, value, ptr_buffer, filepath);
break;
case PREPROCESSING:
load_preprocess_cfgs(ml, key, value, ptr_buffer, filepath);
break;
case CATEGORICAL:
load_categorical_cfgs(ml, key, value, ptr_buffer);
break;
case LAYER:
load_lyr_cfgs(ml, key, value, filepath);
break;
case OUT_LAYER:
load_lyr_cfgs(ml, key, value, filepath);
if (!strcmp("neurons", key) && (size_t)atol(value) != ml->n_label_keys) {
die("util_load_config() Error: out layer neurons (%zu) differ from the number of labels (%zu)",
(size_t)atol(value), ml->n_label_keys);
}
break;
default:
goto util_load_config_error;
break;
}
}
/* Checks categorical_keys in label_keys or input_keys or onehot_keys*/
size_t i,j,k;
for (i = 0; i < ml->n_categorical_keys; i++) {
int ret;
ret = util_get_key_index(ml->categorical_keys[i], ml->input_keys, ml->n_input_keys);
if (ret >= 0) continue;
ret = util_get_key_index(ml->categorical_keys[i], ml->label_keys, ml->n_label_keys);
if (ret == -1) {
die("util_load_config() Error: field '%s' does not exist", ml->categorical_keys[i]);
}
ret = util_get_key_index(ml->categorical_keys[i], ml->onehot_keys, ml->n_onehot_keys);
if (ret >= 0) continue;
die("util_load_config() Error: field '%s' must be encoded", ml->categorical_keys[i]);
}
/* Check onehot_keys in categorical_keys */
for (i = 0; i < ml->n_onehot_keys; i++) {
int ret = util_get_key_index(ml->onehot_keys[i],
ml->categorical_keys,
ml->n_categorical_keys);
if (ret >= 0) continue;
die("util_load_config() Error: one hot field '%s' is not defined as categorical", ml->onehot_keys[i]);
}
/* Determine out layer neurons */
size_t *out_layer_neurons = ml->neurons + ml->network_size - 1;
*out_layer_neurons = 0;
for (i = 0; i < ml->n_label_keys; i++) {
int ret = 1;
for (j = 0; ret && j < ml->n_categorical_keys; j++)
ret = strcmp(ml->categorical_keys[j], ml->label_keys[i]);
for (k = 0; ret && k < ml->n_onehot_keys; k++)
ret = strcmp(ml->onehot_keys[k], ml->label_keys[i]);
*out_layer_neurons += (!ret) ? ml->n_categorical_values[i] : 1;
}
fclose(fp);
return;
util_load_config_error:
die("util_load_config() Error: Invalid format on %s.\n %d: %s",
filepath, line_number, line_buffer_original);
}
void add_lyr(struct Configs *cfg)
{
if (cfg->network_size == 1) {
cfg->activations = ecalloc(1, sizeof(char *));
cfg->neurons = ecalloc(1, sizeof(size_t));
return;
}
cfg->activations = erealloc(cfg->activations, cfg->network_size * sizeof(char *));
cfg->neurons = erealloc(cfg->neurons, cfg->network_size * sizeof(size_t));
}
void load_lyr_cfgs(struct Configs *cfg, char *key, char *value, char *filepath)
{
size_t index = cfg->network_size - 1;
if (index > cfg->network_size)
die("load_lyr_cfgs() Error: index '%d' is greater than network_size '%d'", index, cfg->network_size);
if (!strcmp(key, "activation")) cfg->activations[index] = strdup(value);
else if (!strcmp(key, "neurons")) cfg->neurons[index] = atof(value);
else die("util_load_config() Error: Unknown parameter '%s' on file %s.", key, filepath);
}
void load_net_cfgs(struct Configs *cfg, char *key, char *value, char *strtok_ptr, char *filepath)
{
if (!strcmp(key, "weights_path")) cfg->weights_filepath = e_strdup(value);
else if (!strcmp(key, "loss")) cfg->loss = e_strdup(value);
else if (!strcmp(key, "epochs")) cfg->epochs = (size_t)atol(value);
else if (!strcmp(key, "batch")) cfg->batch_size = (size_t)atol(value);
else if (!strcmp(key, "alpha")) cfg->alpha = (double)atof(value);
else if (!strcmp(key, "inputs")) cfg->input_keys = config_read_values(&(cfg->n_input_keys), value, &strtok_ptr);
else if (!strcmp(key, "labels")) cfg->label_keys = config_read_values(&(cfg->n_label_keys), value, &strtok_ptr);
else die("util_load_config() Error: Invalid parameter '%s' in [net] section on file %s.", key, filepath);
}
void load_preprocess_cfgs(struct Configs *cfg, char *key, char *value, char *strtok_ptr, char *filepath)
{
if (!strcmp(key, "onehot")) cfg->onehot_keys = config_read_values(&cfg->n_onehot_keys, value, &strtok_ptr);
else die("util_load_config() Error: Invalid parameter '%s' in [preprocess] section on file %s", key, filepath);
}
void load_categorical_cfgs(
struct Configs *cfg,
char *key, char *value,
char *strtok_ptr)
{
size_t size, *value_size;
size = cfg->n_categorical_keys;
if (cfg->n_categorical_keys == 0) {
cfg->categorical_keys = ecalloc(1, sizeof(char *));
cfg->categorical_values = ecalloc(1, sizeof(char **));
cfg->n_categorical_values = ecalloc(1, sizeof(size_t));
cfg->n_categorical_keys++;
} else {
cfg->categorical_keys = erealloc(cfg->categorical_keys, sizeof(char *) * (size + 1));
cfg->categorical_values = erealloc(cfg->categorical_values, sizeof(char *) * (size + 1));
cfg->n_categorical_values = erealloc(cfg->n_categorical_values, sizeof(size_t) * (size + 1));
cfg->n_categorical_keys++;
}
value_size = cfg->n_categorical_values + size;
cfg->categorical_keys[size] = e_strdup(key);
cfg->categorical_values[size] = config_read_values(value_size, value, &strtok_ptr);
qsort(cfg->categorical_values[size], *value_size, sizeof(char *), cmpstringp);
}
char ** config_read_values(size_t *n_out_keys, char *first_value, char **strtok_ptr)
{
*n_out_keys = 1;
char **out_keys = ecalloc(1, sizeof(char *));
out_keys[0] = e_strdup(first_value);
char *value;
while ((value = strtok_r(NULL, ", \n", strtok_ptr)) != NULL) {
out_keys = erealloc(out_keys, sizeof(char *) * (*n_out_keys + 1));
out_keys[*n_out_keys] = e_strdup(value);
(*n_out_keys)++;
}
return out_keys;
}
int util_get_key_index(char *key, char **keys, size_t n_keys)
{
int i;
for (i = 0; (size_t)i < n_keys; i++)
if (!strcmp(key, keys[i])) return i;
return -1;
}
int util_argmax(double *values, size_t n_values)
{
double value = values[0];
size_t i, j;
for (i = j = 0; i < n_values; i++) {
if (values[i] > value) j = i;
value = values[i];
}
return j;
}
int cmpstringp(const void *p1, const void *p2)
{
return strcmp(*(const char **) p1, *(const char **) p2);
}
#undef BUFFER_SIZE
|