aboutsummaryrefslogtreecommitdiff
path: root/src/nn.c
blob: 87f74ce03870c7ecc6bf1f59a3c59ebfb6451c7e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#include "nn.h"

static void fill_random_weights(double *weights, double *bias, size_t rows, size_t cols);

double * nn_layer_forward(Layer layer, double *input, size_t input_shape[2])
{
    double *out = calloc(input_shape[0] * layer.neurons, sizeof(double));
    if (out == NULL) {
        perror("nn_layer_forward() Error");
        exit(1);
    }

    for (size_t i = 0; i < input_shape[0]; i++) {
        for (size_t j = 0; j < layer.neurons; j++) {
            size_t index = layer.neurons * i + j;
            out[index] = layer.bias[j];
        }
    }

    cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
                input_shape[0], layer.neurons, layer.input_nodes, // m, n, k
                1.0, input, input_shape[1], //alpha X
                layer.weights, layer.neurons, // W
                1.0, out, layer.neurons); // beta B
    return out;
}

void nn_layer_init_weights(Layer layers[], size_t nmemb, size_t n_inputs)
{
    int i;
    size_t prev_size = n_inputs;


    for (i = 0; i < nmemb;  i++) {
        layers[i].weights = calloc(prev_size * layers[i].neurons, sizeof(Layer));
        layers[i].bias = calloc(layers[i].neurons, sizeof(Layer));

        if (layers[i].weights == NULL || layers[i].bias == NULL) {
            goto nn_layers_calloc_weights_error;
        }
        fill_random_weights(layers[i].weights, layers[i].bias, prev_size, layers[i].neurons);
        layers[i].input_nodes = prev_size;
        prev_size = layers[i].neurons;
    }

    return;

nn_layers_calloc_weights_error:
    perror("nn_layers_calloc_weights() Error");
    exit(1);
}

void nn_layer_free_weights(Layer *layer, size_t nmemb)
{
    for (int i = 0; i < nmemb; i++) {
        free(layer[i].weights);
        free(layer[i].bias);
    }
}

double sigmoid(double x)
{
    return 1 / (1 + exp(-x));
}

double relu(double x)
{
    return (x > 0) ? x : 0;
}

void fill_random_weights(double *weights, double *bias, size_t rows, size_t cols)
{
    FILE *fp = fopen("/dev/random", "rb");
    if (fp == NULL) goto nn_fill_random_weights_error;

    size_t weights_size = rows * cols;
    int64_t *random_weights = calloc(weights_size, sizeof(int64_t));
    int64_t *random_bias = calloc(rows, sizeof(int64_t));

    fread(random_weights, sizeof(double), weights_size, fp);
    fread(random_bias, sizeof(double), rows, fp);

    if (!random_weights || !random_bias) goto nn_fill_random_weights_error;

    for (size_t i = 0; i < weights_size; i++) {
        weights[i] = (double)random_weights[i] / (double)INT64_MAX * 2;
    }

    for (size_t i = 0; i < weights_size; i++) {
        bias[i] = (double)random_bias[i] / (double)INT64_MAX * 2; 
    }

    free(random_weights);
    free(random_bias);
    fclose(fp);
    return;

nn_fill_random_weights_error:
    perror("nn_fill_random_weights Error()");
    exit(1);
}
Feel free to download, copy and edit any repo