aboutsummaryrefslogtreecommitdiff
path: root/src/nn.c
blob: 1fdb192060044ac3c38a3b89e1caeea2434b3740 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#include "nn.h"

static void fill_random_weights(double *weights, double *bias, size_t rows, size_t cols);

void nn_layer_backward(
        double *weights, size_t weigths_shape[2],
        double *delta, size_t delta_cols,
        double *out_prev, size_t out_cols,
        Layer layer, double alpha)
{
    assert(out_cols == weigths_shape[0] && "out_cols does not match with weight rows");
    assert(delta_cols == weigths_shape[1] && "delta_cols does not match with weight cols");

    for (size_t i = 0; i < weigths_shape[0]; i++) {
        for (size_t j = 0; j < weigths_shape[0]; j++) {
            size_t index = weigths_shape[1] * i + j;
            double dcost_w = delta[j] * out_prev[i];
            weights[index] = layer.weights[index] + alpha * dcost_w;
        }
    }
}

void nn_layer_hidden_delta(
        double *delta, size_t delta_cols,
        double *delta_next, size_t delta_next_cols,
        double *weigths_next, size_t weigths_shape[2],
        double *zout, size_t zout_cols,
        double (*activation_derivative)(double))
{
    assert(delta_cols == zout_cols);
    assert(delta_cols == weigths_shape[0]);
    assert(delta_next_cols == weigths_shape[1]);

    for (size_t j = 0; j < delta_cols; j++) {
        double sum = 0;
        for (size_t k = 0; k < delta_next_cols; k++) {
            size_t index = j * delta_cols + k;
            sum += delta_next[k] * weigths_next[index];
        }
        delta[j] = sum * activation_derivative(zout[j]);
    }
}

void nn_layer_out_delta(
        double *delta, size_t delta_cols,
        double *error, size_t error_cols,
        double *zout, size_t zout_cols,
        double (*activation_derivative)(double))
{
    assert(delta_cols == error_cols);
    assert(zout_cols == error_cols);

    for (size_t i = 0; i < delta_cols; i++) {
        delta[i] = error[i] * activation_derivative(zout[i]);
    }
}

void nn_forward(
        double **out, double **zout,
        double *X, size_t X_shape[2],
        Layer network[], size_t network_size)
{
    size_t in_shape[2] = {X_shape[0], X_shape[1]};
    size_t out_shape[2];
    out_shape[0] = X_shape[0];
    double *input = X;

    for (size_t l = 0; l < network_size; l++) {
        out_shape[1] = network[l].neurons;
        nn_layer_forward(network[l], zout[l], out_shape, input, in_shape);
        nn_layer_map_activation(network[l].activation, out[l], out_shape, zout[l], out_shape);
        in_shape[1] = out_shape[1];
        input = out[l];
    }
}

void nn_layer_map_activation(
        double (*activation)(double),
        double *aout, size_t aout_shape[2],
        double *zout, size_t zout_shape[2])
{
    if (zout_shape[0] != aout_shape[0] || zout_shape[1] != aout_shape[1]) {
        fprintf(stderr,
                "nn_layer_map_activation() Error: zout must have (%zu x %zu) dimensions not (%zu x %zu)\n",
                aout_shape[0], aout_shape[1], zout_shape[0], zout_shape[1]);
        exit(1);
    }

    for (size_t i = 0; i < aout_shape[0]; i++) {
        for (size_t j = 0; j < aout_shape[1]; j ++) {
            size_t index = aout_shape[1] * i + j;
            aout[index] = activation(zout[index]);
        }
    }
}

void nn_layer_forward(Layer layer, double *zout, size_t zout_shape[2], double *input, size_t input_shape[2])
{
    if (zout_shape[0] != input_shape[0] || zout_shape[1] != layer.neurons) {
        fprintf(stderr,
                "nn_layer_forward() Error: zout must have (%zu x %zu) dimensions not (%zu x %zu)\n",
                input_shape[0], layer.neurons, zout_shape[0], zout_shape[1]);
        exit(1);
    }

    for (size_t i = 0; i < input_shape[0]; i++) {
        for (size_t j = 0; j < layer.neurons; j++) {
            size_t index = layer.neurons * i + j;
            zout[index] = layer.bias[j];
        }
    }

    cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
                input_shape[0], layer.neurons, layer.input_nodes, // m, n, k
                1.0, input, input_shape[1], //alpha X
                layer.weights, layer.neurons, // W
                1.0, zout, layer.neurons); // beta B
}

void nn_network_init_weights(Layer layers[], size_t nmemb, size_t n_inputs)
{
    int i;
    size_t prev_size = n_inputs;


    for (i = 0; i < nmemb;  i++) {
        layers[i].weights = calloc(prev_size * layers[i].neurons, sizeof(double));
        layers[i].bias = calloc(layers[i].neurons, sizeof(double));

        if (layers[i].weights == NULL || layers[i].bias == NULL) {
            goto nn_layers_calloc_weights_error;
        }
        fill_random_weights(layers[i].weights, layers[i].bias, prev_size, layers[i].neurons);
        layers[i].input_nodes = prev_size;
        prev_size = layers[i].neurons;
    }

    return;

nn_layers_calloc_weights_error:
    perror("nn_layers_calloc_weights() Error");
    exit(1);
}

void nn_network_free_weights(Layer layers[], size_t nmemb)
{
    for (int i = 0; i < nmemb; i++) {
        free(layers[i].weights);
        free(layers[i].bias);
    }
}

double identity(double x)
{
    return x;
}

double sigmoid(double x)
{
    return 1 / (1 + exp(-x));
}

double relu(double x)
{
    return (x > 0) ? x : 0;
}

void fill_random_weights(double *weights, double *bias, size_t rows, size_t cols)
{
    FILE *fp = fopen("/dev/random", "rb");
    if (fp == NULL) goto nn_fill_random_weights_error;

    size_t weights_size = rows * cols;
    int64_t *random_weights = calloc(weights_size, sizeof(int64_t));
    int64_t *random_bias = calloc(cols, sizeof(int64_t));

    fread(random_weights, sizeof(int64_t), weights_size, fp);
    fread(random_bias, sizeof(int64_t), cols, fp);

    if (!random_weights || !random_bias) goto nn_fill_random_weights_error;

    for (size_t i = 0; i < weights_size; i++) {
        weights[i] = (double)random_weights[i] / (double)INT64_MAX * 2;
    }

    for (size_t i = 0; i < cols; i++) {
        bias[i] = (double)random_bias[i] / (double)INT64_MAX * 2; 
    }

    free(random_weights);
    free(random_bias);
    fclose(fp);
    return;

nn_fill_random_weights_error:
    perror("nn_fill_random_weights Error()");
    exit(1);
}
Feel free to download, copy and edit any repo