1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
|
#include "nn.h"
static void fill_random_weights(double *weights, double *bias, size_t rows, size_t cols);
void nn_forward(
double **out, double **zout,
double *X, size_t X_shape[2],
Layer network[], size_t network_size)
{
size_t in_shape[2] = {X_shape[0], X_shape[1]};
size_t out_shape[2];
out_shape[0] = X_shape[0];
double *input = X;
for (size_t l = 0; l < network_size; l++) {
out_shape[1] = network[l].neurons;
nn_layer_forward(network[l], zout[l], out_shape, input, in_shape);
nn_layer_map_activation(network[l].activation, out[l], out_shape, zout[l], out_shape);
in_shape[1] = out_shape[1];
input = out[l];
}
}
void nn_layer_map_activation(
double (*activation)(double),
double *aout, size_t aout_shape[2],
double *zout, size_t zout_shape[2])
{
if (zout_shape[0] != aout_shape[0] || zout_shape[1] != aout_shape[1]) {
fprintf(stderr,
"nn_layer_map_activation() Error: zout must have (%zu x %zu) dimensions not (%zu x %zu)\n",
aout_shape[0], aout_shape[1], zout_shape[0], zout_shape[1]);
exit(1);
}
for (size_t i = 0; i < aout_shape[0]; i++) {
for (size_t j = 0; j < aout_shape[1]; j ++) {
size_t index = aout_shape[1] * i + j;
aout[index] = activation(zout[index]);
}
}
}
void nn_layer_forward(Layer layer, double *zout, size_t zout_shape[2], double *input, size_t input_shape[2])
{
if (zout_shape[0] != input_shape[0] || zout_shape[1] != layer.neurons) {
fprintf(stderr,
"nn_layer_forward() Error: zout must have (%zu x %zu) dimensions not (%zu x %zu)\n",
input_shape[0], layer.neurons, zout_shape[0], zout_shape[1]);
exit(1);
}
for (size_t i = 0; i < input_shape[0]; i++) {
for (size_t j = 0; j < layer.neurons; j++) {
size_t index = layer.neurons * i + j;
zout[index] = layer.bias[j];
}
}
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
input_shape[0], layer.neurons, layer.input_nodes, // m, n, k
1.0, input, input_shape[1], //alpha X
layer.weights, layer.neurons, // W
1.0, zout, layer.neurons); // beta B
}
void nn_network_init_weights(Layer layers[], size_t nmemb, size_t n_inputs)
{
int i;
size_t prev_size = n_inputs;
for (i = 0; i < nmemb; i++) {
layers[i].weights = calloc(prev_size * layers[i].neurons, sizeof(double));
layers[i].bias = calloc(layers[i].neurons, sizeof(double));
if (layers[i].weights == NULL || layers[i].bias == NULL) {
goto nn_layers_calloc_weights_error;
}
fill_random_weights(layers[i].weights, layers[i].bias, prev_size, layers[i].neurons);
layers[i].input_nodes = prev_size;
prev_size = layers[i].neurons;
}
return;
nn_layers_calloc_weights_error:
perror("nn_layers_calloc_weights() Error");
exit(1);
}
void nn_network_free_weights(Layer layers[], size_t nmemb)
{
for (int i = 0; i < nmemb; i++) {
free(layers[i].weights);
free(layers[i].bias);
}
}
double identity(double x)
{
return x;
}
double sigmoid(double x)
{
return 1 / (1 + exp(-x));
}
double relu(double x)
{
return (x > 0) ? x : 0;
}
void fill_random_weights(double *weights, double *bias, size_t rows, size_t cols)
{
FILE *fp = fopen("/dev/random", "rb");
if (fp == NULL) goto nn_fill_random_weights_error;
size_t weights_size = rows * cols;
int64_t *random_weights = calloc(weights_size, sizeof(int64_t));
int64_t *random_bias = calloc(cols, sizeof(int64_t));
fread(random_weights, sizeof(int64_t), weights_size, fp);
fread(random_bias, sizeof(int64_t), cols, fp);
if (!random_weights || !random_bias) goto nn_fill_random_weights_error;
for (size_t i = 0; i < weights_size; i++) {
weights[i] = (double)random_weights[i] / (double)INT64_MAX * 2;
}
for (size_t i = 0; i < cols; i++) {
bias[i] = (double)random_bias[i] / (double)INT64_MAX * 2;
}
free(random_weights);
free(random_bias);
fclose(fp);
return;
nn_fill_random_weights_error:
perror("nn_fill_random_weights Error()");
exit(1);
}
|