1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
|
/**
* ml - a neural network processor written with C
* Copyright (C) 2023 jvech
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <stdarg.h>
#include <errno.h>
#include <getopt.h>
#include <json-c/json.h>
#include "util.h"
#include "nn.h"
#define MAX_FILE_SIZE 536870912 //1<<29; 0.5 GiB
typedef struct Array {
double *data;
size_t shape[2];
} Array;
#define ARRAY_SIZE(x, type) sizeof(x) / sizeof(type)
static void json_read(
const char *filepath,
Array *input, Array *out,
char *out_keys[], size_t out_keys_size,
char *in_keys[], size_t in_keys_size,
bool read_output);
static void json_write(
const char *filepath,
Array input, Array out,
char *out_keys[], size_t out_keys_size,
char *in_keys[], size_t in_keys_size);
void json_read(
const char *filepath,
Array *input, Array *out,
char *out_keys[], size_t n_out_keys,
char *in_keys[], size_t n_input_keys,
bool read_output)
{
FILE *fp = NULL;
static char fp_buffer[MAX_FILE_SIZE];
fp = (!strcmp(filepath, "-")) ? fopen("/dev/stdin", "r") : fopen(filepath, "r");
if (fp == NULL) goto json_read_error;
size_t i = 0;
do {
if (i >= MAX_FILE_SIZE) die("json_read() Error: file size is bigger than '%zu'", i, MAX_FILE_SIZE);
fp_buffer[i] = fgetc(fp);
} while (fp_buffer[i++] != EOF);
json_object *json_obj;
json_obj = json_tokener_parse(fp_buffer);
size_t json_obj_length = json_object_array_length(json_obj);
input->shape[0] = (size_t)json_obj_length;
input->shape[1] = n_input_keys;
input->data = calloc(input->shape[0] * input->shape[1], sizeof(input->data[0]));
out->shape[0] = (size_t)json_obj_length;
out->shape[1] = n_out_keys;
out->data = calloc(out->shape[0] * out->shape[1], sizeof(out->data[0]));
if (!input->data || !out->data) goto json_read_error;
for (int i = 0; i < json_object_array_length(json_obj); i++) {
json_object *item = json_object_array_get_idx(json_obj, i);
for (int j = 0; j < n_input_keys; j++) {
size_t index = n_input_keys * i + j;
input->data[index] = json_object_get_double(json_object_object_get(item, in_keys[j]));
}
if (!read_output) continue;
for (int j = 0; j < n_out_keys; j++) {
size_t index = n_out_keys * i + j;
out->data[index] = json_object_get_double(json_object_object_get(item, out_keys[j]));
}
}
json_object_put(json_obj);
fclose(fp);
return;
json_read_error:
perror("json_read() Error");
exit(1);
}
void json_write(
const char *filepath,
Array input, Array out,
char *out_keys[], size_t out_keys_size,
char *in_keys[], size_t in_keys_size)
{
FILE *fp = (!filepath) ? fopen("/dev/stdout", "w") : fopen(filepath, "w");
if (!fp) die("json_read() Error:");
fprintf(fp, "[\n");
for (size_t i = 0; i < input.shape[0]; i++) {
fprintf(fp, " {\n");
for (size_t j = 0; j < input.shape[1]; j++) {
size_t index = input.shape[1] * i + j;
fprintf(fp, " \"%s\": %lf,\n", in_keys[j], input.data[index]);
}
for (size_t j = 0; j < out.shape[1]; j++) {
size_t index = out.shape[1] * i + j;
fprintf(fp, " \"%s\": %lf", out_keys[j], out.data[index]);
if (j == out.shape[1] - 1) fprintf(fp, "\n");
else fprintf(fp, ",\n");
}
if (i == input.shape[0] - 1) fprintf(fp, " }\n");
else fprintf(fp, " },\n");
}
fprintf(fp, "]\n");
fclose(fp);
}
void load_config(struct Configs *cfg, int n_args, ...)
{
char *filepath;
va_list ap;
va_start(ap, n_args);
int i;
for (i = 0; i < n_args; i++) {
filepath = va_arg(ap, char *);
util_load_config(cfg, filepath);
if (errno == 0) {
va_end(ap);
return;
} else if (errno == ENOENT && i < n_args - 1) {
errno = 0;
} else break;
}
va_end(ap);
die("load_config() Error:");
}
Layer * load_network(struct Configs cfg)
{
extern struct Activation NN_RELU;
extern struct Activation NN_SOFTPLUS;
extern struct Activation NN_SIGMOID;
extern struct Activation NN_LEAKY_RELU;
extern struct Activation NN_LINEAR;
Layer *network = ecalloc(cfg.network_size, sizeof(Layer));
for (size_t i = 0; i < cfg.network_size; i++) {
if (!strcmp("relu", cfg.activations[i])) network[i].activation = NN_RELU;
else if (!strcmp("sigmoid", cfg.activations[i])) network[i].activation = NN_SIGMOID;
else if (!strcmp("softplus", cfg.activations[i])) network[i].activation = NN_SOFTPLUS;
else if (!strcmp("leaky_relu", cfg.activations[i])) network[i].activation = NN_LEAKY_RELU;
else if (!strcmp("linear", cfg.activations[i])) network[i].activation = NN_LINEAR;
else die("load_network() Error: Unknown '%s' activation", cfg.activations[i]);
network[i].neurons = cfg.neurons[i];
}
return network;
}
struct Cost load_loss(struct Configs cfg)
{
extern struct Cost NN_SQUARE;
if (!strcmp("square", cfg.loss)) return NN_SQUARE;
die("load_loss() Error: Unknown '%s' loss function", cfg.loss);
exit(1);
}
int main(int argc, char *argv[]) {
char default_config_path[512];
struct Configs ml_configs = {
.epochs = 100,
.alpha = 1e-5,
.config_filepath = "utils/settings.cfg",
.network_size = 0,
.out_filepath = NULL,
};
// First past to check if --config option was put
util_load_cli(&ml_configs, argc, argv);
optind = 1;
// Load configs with different possible paths
sprintf(default_config_path, "%s/%s", getenv("HOME"), ".config/ml/ml.cfg");
load_config(&ml_configs, 2, ml_configs.config_filepath, default_config_path);
// re-read cli options again, to overwrite file configuration options
util_load_cli(&ml_configs, argc, argv);
argc -= optind;
argv += optind;
Layer *network = load_network(ml_configs);
Array X, y;
if (!strcmp("train", argv[0])) {
json_read(argv[1], &X, &y, ml_configs.label_keys, ml_configs.n_label_keys, ml_configs.input_keys, ml_configs.n_input_keys, true);
nn_network_init_weights(network, ml_configs.network_size, X.shape[1], true);
nn_network_train(
network, ml_configs.network_size,
X.data, X.shape,
y.data, y.shape,
load_loss(ml_configs),
ml_configs.epochs,
ml_configs.alpha);
nn_network_write_weights(ml_configs.weights_filepath, network, ml_configs.network_size);
fprintf(stderr, "weights saved on '%s'\n", ml_configs.weights_filepath);
} else if (!strcmp("predict", argv[0])) {
json_read(argv[1], &X, &y, ml_configs.label_keys, ml_configs.n_label_keys, ml_configs.input_keys, ml_configs.n_input_keys, false);
nn_network_init_weights(network, ml_configs.network_size, X.shape[1], false);
nn_network_read_weights(ml_configs.weights_filepath, network, ml_configs.network_size);
nn_network_predict(y.data, y.shape, X.data, X.shape, network, ml_configs.network_size);
json_write(ml_configs.out_filepath, X, y, ml_configs.label_keys, ml_configs.n_label_keys, ml_configs.input_keys, ml_configs.n_input_keys);
} else usage(1);
nn_network_free_weights(network, ml_configs.network_size);
free(network);
util_free_config(&ml_configs);
return 0;
}
|