aboutsummaryrefslogtreecommitdiff
path: root/doc/ml.1
blob: 4a9926fb273e5e42961044cfef3da0c0bffbb38a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
.\" DO NOT MODIFY THIS FILE!  It was generated by help2man 1.49.3.
.TH ML "1" "September 2024" "ml 0.5.0" "User Commands"
.SH NAME
ml \- manual page for ml 0.5.0
.SH SYNOPSIS
.B ml
[\fI\,re\/\fR]\fI\,train \/\fR[\fI\,Options\/\fR] \fI\,FILE\/\fR
.br
.B ml
\fI\,predict \/\fR[\fI\,-Ohv\/\fR] [\fI\,-f FORMAT\/\fR] [\fI\,-o FILE\/\fR] [\fI\,-p INT\/\fR] \fI\,FILE\/\fR
.SH DESCRIPTION
ml is a simple neural network maker made to train and predict over JSON, CSV
and TSV data, it is suitable to work on classification problems.
.SH OPTIONS
.TP
\fB\-h\fR, \fB\-\-help\fR
Show this message
.TP
\fB\-f\fR, \fB\-\-format\fR=\fI\,FORMAT\/\fR
Define input or output FILE format if needed
.TP
\fB\-O\fR, \fB\-\-only\-out\fR
Don't show input fields (only works with predict)
.TP
\fB\-a\fR, \fB\-\-alpha\fR=\fI\,ALPHA\/\fR
Learning rate (only works with train)
.TP
\fB\-b\fR, \fB\-\-batch\fR=\fI\,INT\/\fR
Select batch size [default: 32] (only works with train)
.TP
\fB\-c\fR, \fB\-\-config\fR=\fI\,FILE\/\fR
Configuration filepath [default=~/.config/ml/ml.cfg]
.TP
\fB\-e\fR, \fB\-\-epochs\fR=\fI\,EPOCHS\/\fR
Epochs to train the model (only works with train)
.TP
\fB\-o\fR, \fB\-\-output\fR=\fI\,FILE\/\fR
Output file (only works with predict)
.TP
\fB\-p\fR, \fB\-\-precision\fR=\fI\,INT\/\fR
Decimals output precision (only works with predict)
[default=auto]
.TP
\fB\-S\fR, \fB\-\-no\-shuffle\fR
Don't shuffle data each epoch (only works with train)
.SH ENVIRONMENT
ML_CONFIG_PATH
    Set the configuration filepath
.SH FILES
~/.config/ml/ml.cfg
    File path for network configuration, here you can setup the network
    architecture and its training parameters
.SH EXAMPLES

Train a network to solve XOR problem, below is the training data:

    [
      {
        "x": 0,
        "y": 0,
        "z": 0
      },
      {
        "x": 1,
        "y": 0,
        "z": 1
      },
      {
        "x": 0,
        "y": 1,
        "z": 1
      },
      {
        "x": 1,
        "y": 1,
        "z": 0
      }
    ]

Use the default configuration file and train the model with:
    $ ml train -e 150 xor.json

And get the network output using:
    $ ml predict xor.json 
.SH AUTHOR
Written by jvech
.SH COPYRIGHT
Copyright \(co 2023  jvech
.PP
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Feel free to download, copy and edit any repo