aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/nn.c16
-rw-r--r--src/nn.h4
2 files changed, 12 insertions, 8 deletions
diff --git a/src/nn.c b/src/nn.c
index ca04003..83fd77a 100644
--- a/src/nn.c
+++ b/src/nn.c
@@ -3,7 +3,7 @@
static void fill_random_weights(double *weights, double *bias, size_t rows, size_t cols);
void nn_backward(
- double **weights,
+ double **weights, double **bias,
double **Zout, double **Outs,
double *Input, size_t input_shape[2],
double *Labels, size_t labels_shape[2],
@@ -33,19 +33,20 @@ void nn_backward(
double *zout = Zout[l] + sample * network[l].neurons;
double *out_prev = Outs[l - 1] + sample * network[l-1].neurons;
nn_layer_out_delta(delta, dcost_out, zout, network[l].neurons, network[l].activation_derivative);
- nn_layer_backward(weights[l], weigths_shape, delta, out_prev, network[l], alpha);
+ nn_layer_backward(weights[l], bias[l], weigths_shape, delta, out_prev, network[l], alpha);
} else if (l == 0) {
size_t weigths_next_shape[2] = {network[l+1].input_nodes, network[l+1].neurons};
double *zout = Zout[l] + sample * network[l].neurons;
double *input = Input + sample * input_shape[1];
nn_layer_hidden_delta(delta, delta_next, zout, weights[l+1], weigths_next_shape, network[l].activation_derivative);
- nn_layer_backward(weights[l], weigths_shape, delta, input, network[l], alpha);
+ nn_layer_backward(weights[l], bias[l], weigths_shape, delta, input, network[l], alpha);
+ break;
} else {
size_t weigths_next_shape[2] = {network[l+1].input_nodes, network[l+1].neurons};
double *zout = Zout[l] + sample * network[l].neurons;
double *out_prev = Outs[l - 1] + sample * network[l-1].neurons;
nn_layer_hidden_delta(delta, delta_next, zout, weights[l+1], weigths_next_shape, network[l].activation_derivative);
- nn_layer_backward(weights[l], weigths_shape, delta, out_prev, network[l], alpha);
+ nn_layer_backward(weights[l], bias[l], weigths_shape, delta, out_prev, network[l], alpha);
}
memcpy(delta_next, delta, weigths_shape[1] * sizeof(double));
}
@@ -57,7 +58,7 @@ void nn_backward(
}
void nn_layer_backward(
- double *weights, size_t weigths_shape[2],
+ double *weights, double *bias, size_t weigths_shape[2],
double *delta, double *out_prev,
Layer layer, double alpha)
{
@@ -65,9 +66,12 @@ void nn_layer_backward(
for (size_t j = 0; j < weigths_shape[1]; j++) {
size_t index = weigths_shape[1] * i + j;
double dcost_w = delta[j] * out_prev[i];
- weights[index] = layer.weights[index] + alpha * dcost_w;
+ weights[index] = layer.weights[index] - alpha * dcost_w;
}
}
+
+ for (size_t j = 0; j < weigths_shape[1]; j++)
+ bias[j] = layer.bias[j] - alpha * delta[j];
}
void nn_layer_hidden_delta(
diff --git a/src/nn.h b/src/nn.h
index c07a943..13b5f7c 100644
--- a/src/nn.h
+++ b/src/nn.h
@@ -37,7 +37,7 @@ void nn_forward(
Layer network[], size_t network_size);
void nn_backward(
- double **weights,
+ double **weights, double **bias,
double **zout, double **outs,
double *input, size_t input_shape[2],
double *labels, size_t labels_shape[2],
@@ -51,7 +51,7 @@ void nn_layer_forward(
double *input, size_t input_shape[2]);
void nn_layer_backward(
- double *weights, size_t weigths_shape[2],
+ double *weights, double *bias, size_t weigths_shape[2],
double *delta, double *out_prev,
Layer layer, double alpha);
Feel free to download, copy and edit any repo