diff options
author | jvech <jmvalenciae@unal.edu.co> | 2023-07-28 09:29:18 -0500 |
---|---|---|
committer | jvech <jmvalenciae@unal.edu.co> | 2023-07-28 09:29:18 -0500 |
commit | 1503fc83991237fa0cf6eb42b0ca1a4904cf8a01 (patch) | |
tree | bea34a7dd81b469085bbc8cb7a403a92cf46c974 /src/main.c | |
parent | e9b26e6cae80a089f6b969226a968f5b79a7820b (diff) |
add: network forward pass implemented
Diffstat (limited to 'src/main.c')
-rw-r--r-- | src/main.c | 45 |
1 files changed, 19 insertions, 26 deletions
@@ -13,10 +13,6 @@ typedef struct Array { } Array; #define ARRAY_SIZE(x, type) sizeof(x) / sizeof(type) -Layer neural[] = { - {.neurons = 5, .activation = relu}, - {.neurons = 1, .activation = sigmoid}, -}; static void json_read(const char *filepath, Array *input, Array *out, @@ -30,8 +26,8 @@ void json_read(const char *filepath, char *in_keys[], size_t n_input_keys) { - FILE *fp; - char *fp_buffer; + FILE *fp = NULL; + char *fp_buffer = NULL; size_t ret; int64_t fp_size; @@ -90,34 +86,31 @@ json_read_error: } int main(void) { + Layer network[] = { + {.neurons = 5, .activation = relu}, + {.neurons = 1, .activation = sigmoid}, + }; Array X, y; char *in_keys[] = {"area", "longitude", "latitude"}; json_read("data/test.json", &X, &y, "price", in_keys, ARRAY_SIZE(in_keys, char *)); - nn_layer_init_weights(neural, ARRAY_SIZE(neural, Layer), X.shape[1]); - double *out = nn_layer_forward(neural[0], X.data, X.shape); + size_t network_size = ARRAY_SIZE(network, Layer); + nn_network_init_weights(network, network_size, 3); + double **outputs = calloc(network_size, sizeof(double *)); - printf("area\tlat\tlong\t| price\n"); - for (size_t i = 0; i < X.shape[0]; i++) { - for (size_t j = 0; j < X.shape[1]; j++) { - size_t index = X.shape[1] * i + j; - printf("%.2lf\t", X.data[index]); - } - printf("| %.2lf\n", y.data[i]); - } + size_t out_rows = X.shape[0];// + for (size_t l = 0; l < network_size; l++) {// + outputs[l] = calloc(network[l].neurons * out_rows, sizeof(double));// + } // - printf("---\n"); - for (size_t i = 0; i < X.shape[0]; i++) { - for (size_t j = 0; j < neural[0].neurons; j++) { - size_t index = neural[0].neurons * i + j; - printf("%.2lf\t", out[index]); - } - printf("\n"); - } + nn_forward(outputs, X.data, X.shape, network, network_size); + for (size_t l = 0; l < network_size; l++) free(outputs[l]); + free(outputs); - nn_layer_free_weights(neural, ARRAY_SIZE(neural, Layer)); - free(out); + nn_network_free_weights(network, network_size); free(X.data); free(y.data); + + } |