diff options
author | jvech <jmvalenciae@unal.edu.co> | 2023-07-24 20:06:05 -0500 |
---|---|---|
committer | jvech <jmvalenciae@unal.edu.co> | 2023-07-24 20:06:05 -0500 |
commit | 7710efc305682f35cbc8d69d9b1e5739dbb89f0d (patch) | |
tree | 73cb5939eb3fbdc2f232176e6e61df4bf21c0aca /doc/main.tex | |
parent | f2cf742719445a6ac7cea17043d3adbcbc247883 (diff) |
doc: backpropagation notes added
Diffstat (limited to 'doc/main.tex')
-rw-r--r-- | doc/main.tex | 67 |
1 files changed, 67 insertions, 0 deletions
diff --git a/doc/main.tex b/doc/main.tex new file mode 100644 index 0000000..00028f9 --- /dev/null +++ b/doc/main.tex @@ -0,0 +1,67 @@ +%acmart +%IEEEtran +%rbt-mathnotes-formula-sheet +\documentclass{rbt-mathnotes-formula-sheet} +\usepackage[utf8]{inputenc} +\usepackage[pdf]{graphviz} +\usepackage{derivative} +\title{Deep learning notes} + +\begin{document} + +\section{Observations} +\begin{eqnarray} + i,j,k,l,L,m,M,n,N,o \in & \mathcal{N} \\ + X \in & \mathcal{R}^{n \times o} \\ + Y \in & \mathcal{R}^{n \times m} +\end{eqnarray} + +\section{Neural Network} + +\includegraphics[width=0.3\textwidth]{net.pdf} + +\begin{eqnarray} + a^0 = & x_{1 \times p}(n) \\ + a^L = & d_{1 \times m}(n) \\ + a^l = & \varphi (z^l) \\ + z^l = & a^{l - 1} W^l +\end{eqnarray} + +\section{Gradient Descent} + +\begin{eqnarray} + e(n) = & y(n) - d(n) \\ + \xi(n) = & \frac{1}{2} e e^{\top}\\ + \xi(n) = & \frac{1}{2} \sum_{j=1}^{M} (e_j(n))^2 \\ + W_{(k + 1)} = & W_{(k)} - \nabla_{W} \xi(d,y) \\ + \xi_{avg}(n) = & \frac{1}{2n} \sum_{n=1}^N \sum_{j=1}^{M} (e_j(n))^2 \\ +\end{eqnarray} + +\section{Backpropagation} + +\begin{eqnarray} + \pdv{\xi}{\omega^l_{ij}} = & \delta_j^l \pdv{z_j^l}{\omega_{ij}} \\ + \delta_j^l = & \pdv{\xi}{z_j^l} \\ + \pdv{z_j^l}{\omega_{ij}} = & a_i^{l-1} \\ +\end{eqnarray} + +Output Layer + +\begin{eqnarray} + \delta_j^L =& \pdv{\xi}{z_j^L} = \pdv{\xi}{a_j^L} \pdv{a_j^L}{z_j^L}\\ + \delta_j^L =& \pdv{\xi}{a_j^L} \dot{\varphi}(z_j^L)\\ + =& - e_j \dot{\varphi}(z_j^L) +\end{eqnarray} + +Hidden Layer + +\begin{eqnarray} + \delta_j^l = & \pdv{\xi}{z_j^l} = \sum_k \pdv{\xi}{z_k^{l+1}} \pdv{z_k^{l+1}}{z_j^l}\\ + \delta_j^l = & \sum_k \delta_k^{l+1} \pdv{z_k^{l+1}}{z_j^l}\\ + \pdv{z_k^{l+1}}{z_j^l} = & + \frac{\partial}{\partial z_j^l} \left( \sum_j \omega_{jk}^{l+1} \varphi(z_j^l) \right)\\ + \pdv{z_k^{l+1}}{z_j^l} = & \omega_{jk} \dot{\varphi}(z_j^l)\\ + \delta_j^l = & \sum_k \delta_k^{l+1} \omega_{jk}^{l+1} \dot{\varphi}(z_j^l)\\ +\end{eqnarray} + +\end{document} |