#include "linear.h" #include mat4 linearLookAt(vec3 position, vec3 target, vec3 world_up) { mat4 out = linearMat4Identity(); mat4 translate; vec3 cam_dir, cam_right, cam_up; /* position - target */ cam_dir = linearVec3Add(position, linearVec3ScalarMulp(target, -1.0)); cam_dir = linearVec3Normalize(cam_dir); cam_right = linearVec3CrossProduct(world_up, cam_dir); cam_right = linearVec3Normalize(cam_right); cam_up = linearVec3CrossProduct(cam_dir, cam_right); int i; for (i = 0; i < 3; i++) { out.matrix[0][i] = cam_right.vector[i]; out.matrix[1][i] = cam_up.vector[i]; out.matrix[2][i] = cam_dir.vector[i]; } translate = linearTranslate(-position.vector[0], -position.vector[1], -position.vector[2]); return linearMat4Mul(out, translate); } mat4 linearPerspective(float FoV, float ratio, float near, float far) { mat4 out = linearMat4Fill(0.0); float FoV_radians = FoV * M_PI / 180; float width = near * tanf(FoV_radians) * ratio; float height = near * tanf(FoV_radians); out.matrix[0][0] = near / width; out.matrix[1][1] = near / height; out.matrix[2][2] = -(far + near) / (far - near); out.matrix[2][3] = -2 * far * near / (far - near); out.matrix[3][2] = -1; return out; } mat4 linearTranslate(float T_x, float T_y, float T_z) { mat4 out = linearMat4Identity(); out.matrix[0][3] = T_x; out.matrix[1][3] = T_y; out.matrix[2][3] = T_z; return out; } mat4 linearTranslatev(vec3 T) { return linearTranslate(T.vector[0], T.vector[1], T.vector[2]); } mat4 linearScale(float S_x, float S_y, float S_z) { mat4 out = linearMat4Identity(); out.matrix[0][0] = S_x; out.matrix[1][1] = S_y; out.matrix[2][2] = S_z; return out; } mat4 linearScalev(vec3 S) { return linearScale(S.vector[0], S.vector[1], S.vector[2]); } mat4 linearRotate(float degree, vec3 R_xyz) { mat4 out = linearMat4Identity(); vec3 R_xyz_normalized = linearVec3Normalize(R_xyz); float radians = degree * M_PI/180.0; float Rx = R_xyz_normalized.vector[0]; float Ry = R_xyz_normalized.vector[1]; float Rz = R_xyz_normalized.vector[2]; float rcos = cosf(radians); float rsin = sinf(radians); out.matrix[0][0] = rcos + pow(Rx, 2) * ( 1 - rcos); out.matrix[0][1] = Rx * Ry * (1 - rcos) - Rz * rsin; out.matrix[0][2] = Rx * Rz * (1 - rcos) + Ry * rsin; out.matrix[1][0] = Rx * Ry * (1 - rcos) + Rz * rsin; out.matrix[1][1] = rcos + pow(Ry, 2) * ( 1 - rcos); out.matrix[1][2] = Ry * Rz * (1 - rcos) - Rx * rsin; out.matrix[2][0] = Rz * Rx * (1 - rcos) - Ry * rsin; out.matrix[2][1] = Ry * Rz * (1 - rcos) + Rx * rsin; out.matrix[2][2] = rcos + pow(Rz, 2) * ( 1 - rcos); return out; } mat4 linearMat4Fill(float value) { int i, j; mat4 out; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { out.matrix[i][j] = value; } } return out; } mat4 linearMat4Identity() { int i, j; mat4 out; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { if (i == j) out.matrix[i][j] = 1.0; else out.matrix[i][j] = 0.0; } } return out; } mat4 linearMat4Transpose(mat4 x) { mat4 out; int i, j; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { out.matrix[i][j] = x.matrix[j][i]; } } return out; } mat4 linearMat4Mul(mat4 x1, mat4 x2) { mat4 out; int i, j, k; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { out.matrix[i][j] = 0.0; for (k = 0; k < 4; k++) out.matrix[i][j] += x1.matrix[i][k] * x2.matrix[k][j]; } } return out; } mat4 linearMat4Add(mat4 x1, mat4 x2) { int i, j; mat4 out; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { out.matrix[i][j] = x1.matrix[i][j] + x2.matrix[i][j]; } } return out; } float linearMat4Det(mat4 x) { return 0.0; } vec3 linearVec3ScalarMulp(vec3 x, float scalar) { vec3 out; int i; for (i = 0; i < 3; i++) { out.vector[i] = scalar * x.vector[i]; } return out; } vec3 linearVec3(float x, float y, float z) { vec3 out; out.vector[0] = x; out.vector[1] = y; out.vector[2] = z; return out; } vec3 linearVec3Add(vec3 x, vec3 y) { vec3 out; int i; for (i = 0; i < 3; i++) { out.vector[i] = x.vector[i] + y.vector[i]; } return out; } vec3 linearVec3Normalize(vec3 x) { vec3 out; float norm = sqrtf(linearVec3DotProduct(x, x)); int i; if (norm == 0) return x; for (i = 0; i < 3; i++) { out.vector[i] = x.vector[i] / norm; } return out; } vec3 linearVec3CrossProduct(vec3 x, vec3 y) { vec3 out; out.vector[0] = x.vector[1] * y.vector[2] - x.vector[2] * y.vector[1]; out.vector[1] = - x.vector[0] * y.vector[2] + x.vector[2] * y.vector[0]; out.vector[2] = x.vector[0] * y.vector[1] - x.vector[1] * y.vector[0]; return out; } float linearVec3DotProduct(vec3 x, vec3 y) { float out = 0; int i; for (i = 0; i < 3; i++) { out += x.vector[i] * y.vector[i]; } return out; }