/** * ml - a neural network processor written with C * Copyright (C) 2023 jvech * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef __NN__ #define __NN__ #include #include struct Cost { double (*func)(double labels[], double net_out[], size_t shape); double (*dfunc_out)(double labels, double net_out); }; struct Activation { double (*func)(double); double (*dfunc)(double); }; typedef struct Layer { double *weights, *bias; struct Activation activation; size_t neurons, input_nodes; } Layer; void nn_network_write_weights(char *filepath, Layer *network, size_t network_size); void nn_network_read_weights(char *filepath, Layer *network, size_t network_size); void nn_network_init_weights(Layer *network, size_t nmemb, size_t input_cols, bool fill_random); void nn_network_free_weights(Layer *network, size_t nmemb); void nn_network_predict( double *out, size_t out_shape[2], double *input, size_t input_shape[2], Layer network[], size_t network_size); void nn_network_train( Layer network[], size_t network_size, double *input, size_t input_shape[2], double *labels, size_t labels_shape[2], struct Cost cost, size_t epochs, double alpha); void nn_layer_map_activation( double (*activation)(double), double *aout, size_t aout_shape[2], double *zout, size_t zout_shape[2]); double sigmoid(double x); double relu(double x); double identity(double x); void nn_forward( double **aout, double **zout, double *input, size_t input_shape[2], Layer network[], size_t network_size); void nn_backward( double **weights, double **bias, double **zout, double **outs, double *input, size_t input_shape[2], double *labels, size_t labels_shape[2], Layer network[], size_t network_size, double (cost_derivative)(double, double), double alpha); void nn_layer_forward( Layer layer, double *out, size_t out_shape[2], double *input, size_t input_shape[2]); void nn_layer_backward( double *weights, double *bias, size_t weigths_shape[2], double *delta, double *out_prev, Layer layer, double alpha); void nn_layer_out_delta( double *delta, double *dcost_out, double *zout, size_t cols, double (*activation_derivative)(double)); void nn_layer_hidden_delta( double *delta, double *delta_next, double *zout, double *weights_next, size_t weights_next_shape[2], double (*activation_derivative)(double)); #endif