/** * ml - a neural network processor written with C * Copyright (C) 2023 jvech * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include #include #include #include #include "util.h" #include "parse.h" #include "nn.h" #define MAX_FILE_SIZE 536870912 //1<<29; 0.5 GiB #define ARRAY_SIZE(x, type) sizeof(x) / sizeof(type) void load_config(struct Configs *cfg, int n_args, ...) { char *filepath; va_list ap; va_start(ap, n_args); int i; for (i = 0; i < n_args; i++) { filepath = va_arg(ap, char *); util_load_config(cfg, filepath); if (errno == 0) { va_end(ap); return; } else if (errno == ENOENT && i < n_args - 1) { errno = 0; } else break; } va_end(ap); die("load_config('%s') Error:", filepath); } Layer * load_network(struct Configs cfg) { extern struct Activation NN_RELU; extern struct Activation NN_SOFTPLUS; extern struct Activation NN_SIGMOID; extern struct Activation NN_LEAKY_RELU; extern struct Activation NN_LINEAR; extern struct Activation NN_TANH; Layer *network = ecalloc(cfg.network_size, sizeof(Layer)); for (size_t i = 0; i < cfg.network_size; i++) { if (!strcmp("relu", cfg.activations[i])) network[i].activation = NN_RELU; else if (!strcmp("sigmoid", cfg.activations[i])) network[i].activation = NN_SIGMOID; else if (!strcmp("softplus", cfg.activations[i])) network[i].activation = NN_SOFTPLUS; else if (!strcmp("leaky_relu", cfg.activations[i])) network[i].activation = NN_LEAKY_RELU; else if (!strcmp("linear", cfg.activations[i])) network[i].activation = NN_LINEAR; else if (!strcmp("tanh", cfg.activations[i])) network[i].activation = NN_TANH; else die("load_network() Error: Unknown '%s' activation", cfg.activations[i]); network[i].neurons = cfg.neurons[i]; } return network; } int main(int argc, char *argv[]) { char default_config_path[512], *env_config_path; struct Configs ml_configs = { .epochs = 100, .batch_size = 32, .alpha = 1e-5, .shuffle = true, .config_filepath = "", .network_size = 0, .only_out = false, .decimal_precision = -1, .file_format = NULL, .out_filepath = NULL, }; // First past to check if --config option was put util_load_cli(&ml_configs, argc, argv); optind = 1; // Load configs with different possible paths sprintf(default_config_path, "%s/%s", getenv("HOME"), ".config/ml/ml.cfg"); env_config_path = (getenv("ML_CONFIG_PATH"))? getenv("ML_CONFIG_PATH"):""; load_config(&ml_configs, 3, ml_configs.config_filepath, env_config_path, default_config_path); // re-read cli options again, to overwrite file configuration options util_load_cli(&ml_configs, argc, argv); argc -= optind; argv += optind; Layer *network = load_network(ml_configs); Array in, out; double *X = NULL, *y = NULL; size_t X_shape[2], y_shape[2]; if (!strcmp("train", argv[0]) || !strcmp("retrain", argv[0])) { file_read(argv[1], &in, &out, ml_configs, true); X = data_preprocess(X_shape, in, ml_configs, true, false); y = data_preprocess(y_shape, out, ml_configs, false, false); if (!strcmp("train", argv[0])) { nn_network_init_weights(network, ml_configs.network_size, X_shape[1], true); } else if (!strcmp("retrain", argv[0])) { nn_network_init_weights(network, ml_configs.network_size, X_shape[1], false); nn_network_read_weights(ml_configs.weights_filepath, network, ml_configs.network_size); } nn_network_train(network, ml_configs, X, X_shape, y, y_shape); nn_network_write_weights(ml_configs.weights_filepath, network, ml_configs.network_size); fprintf(stderr, "weights saved on '%s'\n", ml_configs.weights_filepath); } else if (!strcmp("predict", argv[0])) { file_read(argv[1], &in, &out, ml_configs, false); X = data_preprocess(X_shape, in, ml_configs, true, false); y = data_preprocess(y_shape, out, ml_configs, false, true); nn_network_init_weights(network, ml_configs.network_size, X_shape[1], false); nn_network_read_weights(ml_configs.weights_filepath, network, ml_configs.network_size); nn_network_predict(y, y_shape, X, X_shape, network, ml_configs.network_size); // If neither output and file_format defined use input to define the output format if (!ml_configs.file_format && !ml_configs.out_filepath) { ml_configs.file_format = file_format_infer(ml_configs.in_filepath); } data_postprocess(&out, y, y_shape, ml_configs, false); file_write(in, out, ml_configs); } else usage(1); nn_network_free_weights(network, ml_configs.network_size); free(network); array_free(&in); array_free(&out); free(X); free(y); util_free_config(&ml_configs); return 0; }