/** * ml - a neural network processor written with C * Copyright (C) 2023 jvech * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "nn.h" double leaky_relu(double x); double dleaky_relu(double x); double relu(double x); double drelu(double x); double sigmoid(double x); double dsigmoid(double x); double softplus(double x); double dsoftplus(double x); double linear(double x); double dlinear(double x); double dtanh(double x); struct Activation NN_LEAKY_RELU = { .func = leaky_relu, .dfunc = dleaky_relu }; struct Activation NN_SOFTPLUS = { .func = softplus, .dfunc = dsoftplus }; struct Activation NN_RELU = { .func = relu, .dfunc = drelu }; struct Activation NN_SIGMOID = { .func = sigmoid, .dfunc = dsigmoid }; struct Activation NN_LINEAR = { .func = linear, .dfunc = dlinear, }; struct Activation NN_TANH = { .func = tanh, .dfunc = dtanh, }; double linear(double x) {return x;} double dlinear(double x) {return 1.0;} double sigmoid(double x) { return 1 / (1 + exp(-x)); } double dsigmoid(double x) { return sigmoid(x) * (1 - sigmoid(x)); } double relu(double x) { return (x > 0) ? x : 0; } double drelu(double x) { return (x > 0) ? 1 : 0; } double leaky_relu(double x) { return (x > 0) ? x : 0.01 * x; } double dleaky_relu(double x) { return (x > 0) ? 1 : 0.01; } double softplus(double x) { return log1p(exp(x)); } double dsoftplus(double x) { return sigmoid(x); } double dtanh(double x) {return 1 - tanh(x) * tanh(x);};