%acmart %IEEEtran %rbt-mathnotes-formula-sheet \documentclass{rbt-mathnotes-formula-sheet} \usepackage[utf8]{inputenc} \usepackage[pdf]{graphviz} \usepackage{derivative} \title{Deep learning notes} \begin{document} \section{Observations} \begin{eqnarray} i,j,k,l,L,m,M,n,N,o \in & \mathcal{N} \\ X \in & \mathcal{R}^{n \times o} \\ Y \in & \mathcal{R}^{n \times m} \end{eqnarray} \section{Neural Network} \includegraphics[width=0.3\textwidth]{net.pdf} \begin{eqnarray} a^0 = & x_{1 \times p}(n) \\ a^L = & d_{1 \times m}(n) \\ a^l = & \varphi (z^l) \\ z^l = & a^{l - 1} W^l \end{eqnarray} \section{Gradient Descent} \begin{eqnarray} e(n) = & y(n) - d(n) \\ \xi(n) = & \frac{1}{2} e e^{\top}\\ \xi(n) = & \frac{1}{2} \sum_{j=1}^{M} (e_j(n))^2 \\ W_{(k + 1)} = & W_{(k)} - \nabla_{W} \xi(d,y) \\ \xi_{avg}(n) = & \frac{1}{2n} \sum_{n=1}^N \sum_{j=1}^{M} (e_j(n))^2 \\ \end{eqnarray} \section{Backpropagation} \begin{eqnarray} \pdv{\xi}{\omega^l_{ij}} = & \delta_j^l \pdv{z_j^l}{\omega_{ij}} \\ \delta_j^l = & \pdv{\xi}{z_j^l} \\ \pdv{z_j^l}{\omega_{ij}} = & a_i^{l-1} \\ \end{eqnarray} Output Layer \begin{eqnarray} \delta_j^L =& \pdv{\xi}{z_j^L} = \pdv{\xi}{a_j^L} \pdv{a_j^L}{z_j^L}\\ \delta_j^L =& \pdv{\xi}{a_j^L} \dot{\varphi}(z_j^L)\\ =& - e_j \dot{\varphi}(z_j^L) \end{eqnarray} Hidden Layer \begin{eqnarray} \delta_j^l = & \pdv{\xi}{z_j^l} = \sum_k \pdv{\xi}{z_k^{l+1}} \pdv{z_k^{l+1}}{z_j^l}\\ \delta_j^l = & \sum_k \delta_k^{l+1} \pdv{z_k^{l+1}}{z_j^l}\\ \pdv{z_k^{l+1}}{z_j^l} = & \frac{\partial}{\partial z_j^l} \left( \sum_j \omega_{jk}^{l+1} \varphi(z_j^l) \right)\\ \pdv{z_k^{l+1}}{z_j^l} = & \omega_{jk} \dot{\varphi}(z_j^l)\\ \delta_j^l = & \sum_k \delta_k^{l+1} \omega_{jk}^{l+1} \dot{\varphi}(z_j^l)\\ \end{eqnarray} \end{document}