aboutsummaryrefslogtreecommitdiff
path: root/src/nn.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/nn.c')
-rw-r--r--src/nn.c82
1 files changed, 82 insertions, 0 deletions
diff --git a/src/nn.c b/src/nn.c
new file mode 100644
index 0000000..99ae1a3
--- /dev/null
+++ b/src/nn.c
@@ -0,0 +1,82 @@
+#include "nn.h"
+
+static void fill_random_weights(double *weights, double *bias, size_t rows, size_t cols);
+
+void nn_layer_init_weights(Layer layer[], size_t nmemb, size_t n_inputs)
+{
+ int i;
+ size_t prev_size = n_inputs;
+
+
+ for (i = 0; i < nmemb; i++) {
+ layer[i].weights = calloc(prev_size * layer[i].neurons, sizeof(Layer));
+ layer[i].bias = calloc(prev_size, sizeof(Layer));
+
+ if (layer[i].weights == NULL || layer[i].bias == NULL) {
+ goto nn_layer_calloc_weights_error;
+ }
+ fill_random_weights(layer[i].weights, layer[i].bias, prev_size, layer[i].neurons);
+ prev_size = layer[i].neurons;
+ }
+
+ return;
+
+nn_layer_calloc_weights_error:
+ perror("nn_layer_calloc_weights() Error");
+ exit(1);
+}
+
+void nn_layer_free_weights(Layer *layer, size_t nmemb)
+{
+ for (int i = 0; i < nmemb; i++) {
+ free(layer[i].weights);
+ }
+}
+
+double * nn_layer_forward(Layer layer, double *input, size_t input_shape[2])
+{
+ double *out = NULL;
+ return out;
+}
+
+double sigmoid(double x)
+{
+ return 1 / (1 + exp(-x));
+}
+
+double relu(double x)
+{
+ return (x > 0) ? x : 0;
+}
+
+void fill_random_weights(double *weights, double *bias, size_t rows, size_t cols)
+{
+ FILE *fp = fopen("/dev/random", "rb");
+ if (fp == NULL) goto nn_fill_random_weights_error;
+
+ size_t weights_size = rows * cols;
+ int64_t *random_weights = calloc(weights_size, sizeof(int64_t));
+ int64_t *random_bias = calloc(rows, sizeof(int64_t));
+
+ fread(random_weights, sizeof(double), weights_size, fp);
+ fread(random_bias, sizeof(double), rows, fp);
+
+ if (!random_weights || !random_bias) goto nn_fill_random_weights_error;
+
+ for (size_t i = 0; i < weights_size; i++) {
+ weights[i] = (double)random_weights[i] / (double)INT64_MAX * 2;
+ }
+
+ for (size_t i = 0; i < weights_size; i++) {
+ bias[i] = (double)random_bias[i] / (double)INT64_MAX * 2;
+ }
+
+ free(random_weights);
+ free(random_bias);
+ fclose(fp);
+ return;
+
+nn_fill_random_weights_error:
+ perror("nn_fill_random_weights Error()");
+ exit(1);
+}
Feel free to download, copy and edit any repo