aboutsummaryrefslogtreecommitdiff
path: root/src/nn.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/nn.c')
-rw-r--r--src/nn.c61
1 files changed, 38 insertions, 23 deletions
diff --git a/src/nn.c b/src/nn.c
index 7744fd4..1f70785 100644
--- a/src/nn.c
+++ b/src/nn.c
@@ -2,6 +2,21 @@
static void fill_random_weights(double *weights, double *bias, size_t rows, size_t cols);
+double relu(double x);
+double drelu(double x);
+double sigmoid(double x);
+double dsigmoid(double x);
+
+struct Activation NN_RELU = {
+ .func = relu,
+ .dfunc = drelu
+};
+
+struct Activation NN_SIGMOID = {
+ .func = sigmoid,
+ .dfunc = dsigmoid
+};
+
void nn_backward(
double **weights, double **bias,
double **Zout, double **Outs,
@@ -34,20 +49,20 @@ void nn_backward(
if (l == network_size - 1) {
double *zout = Zout[l] + sample * network[l].neurons;
double *out_prev = Outs[l - 1] + sample * network[l-1].neurons;
- nn_layer_out_delta(delta, dcost_out, zout, network[l].neurons, network[l].activation_derivative);
+ nn_layer_out_delta(delta, dcost_out, zout, network[l].neurons, network[l].activation.dfunc);
nn_layer_backward(weights[l], bias[l], weigths_shape, delta, out_prev, network[l], alpha);
} else if (l == 0) {
size_t weigths_next_shape[2] = {network[l+1].input_nodes, network[l+1].neurons};
double *zout = Zout[l] + sample * network[l].neurons;
double *input = Input + sample * input_shape[1];
- nn_layer_hidden_delta(delta, delta_next, zout, weights[l+1], weigths_next_shape, network[l].activation_derivative);
+ nn_layer_hidden_delta(delta, delta_next, zout, weights[l+1], weigths_next_shape, network[l].activation.dfunc);
nn_layer_backward(weights[l], bias[l], weigths_shape, delta, input, network[l], alpha);
break;
} else {
size_t weigths_next_shape[2] = {network[l+1].input_nodes, network[l+1].neurons};
double *zout = Zout[l] + sample * network[l].neurons;
double *out_prev = Outs[l - 1] + sample * network[l-1].neurons;
- nn_layer_hidden_delta(delta, delta_next, zout, weights[l+1], weigths_next_shape, network[l].activation_derivative);
+ nn_layer_hidden_delta(delta, delta_next, zout, weights[l+1], weigths_next_shape, network[l].activation.dfunc);
nn_layer_backward(weights[l], bias[l], weigths_shape, delta, out_prev, network[l], alpha);
}
memcpy(delta_next, delta, weigths_shape[1] * sizeof(double));
@@ -119,7 +134,7 @@ void nn_forward(
for (size_t l = 0; l < network_size; l++) {
out_shape[1] = network[l].neurons;
nn_layer_forward(network[l], zout[l], out_shape, input, in_shape);
- nn_layer_map_activation(network[l].activation, out[l], out_shape, zout[l], out_shape);
+ nn_layer_map_activation(network[l].activation.func, out[l], out_shape, zout[l], out_shape);
in_shape[1] = out_shape[1];
input = out[l];
}
@@ -201,25 +216,6 @@ void nn_network_free_weights(Layer layers[], size_t nmemb)
}
}
-double identity(double x)
-{
- return x;
-}
-
-double sigmoid(double x)
-{
- return 1 / (1 + exp(-x));
-}
-
-double relu(double x)
-{
- return (x > 0) ? x : 0;
-}
-
-double derivative_relu(double x) {
- return (x > 0) ? 1 : 0;
-}
-
void fill_random_weights(double *weights, double *bias, size_t rows, size_t cols)
{
FILE *fp = fopen("/dev/random", "rb");
@@ -251,3 +247,22 @@ nn_fill_random_weights_error:
perror("nn_fill_random_weights Error()");
exit(1);
}
+
+double sigmoid(double x)
+{
+ return 1 / (1 + exp(-x));
+}
+
+double dsigmoid(double x)
+{
+ return sigmoid(x) * (1 - sigmoid(x));
+}
+
+double relu(double x)
+{
+ return (x > 0) ? x : 0;
+}
+
+double drelu(double x) {
+ return (x > 0) ? 1 : 0;
+}
Feel free to download, copy and edit any repo